I have a presentation to make to people who have (almost) no clue of how a GPU works. I think saying that a GPU has a thousand cores where a CPU only has four to eight of them is a non-sense. But I want to give my audience an element of comparison.
After a few months working with NVidia's Kepler and AMD's GCN architectures, I'm tempted to compare a GPU "core" to a CPU's SIMD ALU (I don't know if they have a name for that at Intel). Is it fair ? After all, when looking at an assembly level, those programming models have much in common (at least with GCN, take a look at p2-6 of the ISA manual).
This article states that an Haswell processor can do 32 single-precision operations per cycle, but I suppose there is pipelining or other things happening to achieve that rate. In NVidia parlance, how many Cuda-cores does this processor have ? I would say 8 per CPU-core for 32 bits operations, but this is just a guess based on the SIMD width.
Of course there is many other things to take into account when comparing CPU and GPU hardware, but this is not what I'm trying to do. I just have to explain how the thing is working.
PS: All pointers to CPU hardware documentations or CPU/GPU presentations are greatly appreciated !
EDIT: Thanks for your answers, sadly I had to chose only one of them. I marked Igor's answer because it sticks the most to my initial question and gave me enough informations to justify why this comparison shouldn't be taken too far, but CaptainObvious provided very good articles.
More number of CUDA cores means more data can be processed parallelly. More clock speed means that a single core can perform much faster. The GPUs get better with new generations and architectures, so a graphic card with more number of CUDA cores is not necessarily more powerful than the one with lesser CUDA cores.
Is AVX-512 Needed on Consumer Chipsets? The AVX-512 instruction set increases the size of a CPU's register to enhance its performance. This boost in performance enables CPUs to crunch numbers faster, allowing users to run video/audio compression algorithms at faster speeds.
SSE & AVX RegistersSSE and AVX have 16 registers each. On SSE they are referenced as XMM0-XMM15, and on AVX they are called YMM0-YMM15. XMM registers are 128 bits long, whereas YMM are 256bit. SSE adds three typedefs: __m128 , __m128d and __m128i . Float, double (d) and integer (i) respectively.
(Streaming SIMD Extensions) A set of registers and instructions added to Intel CPU chips to improve multimedia performance, primarily video encoding and decoding. Starting with the Pentium III in 1999, eight 128-bit integer registers were added along with 70 new instructions.
I'd be very caution on making this kind of comparison. After all even in the GPU world the term "core" depending on the context has really different capability: the new AMD GCN is quite different from the old VLIW4 one which itself is quite different from the CUDA core one.
Besides that, you will bring more puzzlement than understanding to your audience if you make just one small comparison with CPU and that's it. If I were you I'd still go for a more detailed (can still be quick) comparison.
For instance someone used to CPU and with little knowledge of GPU, might wonder how come a GPU can have so many registers though it's so expensive (in the CPU world). An explanation to that question is given at the end of this post as well as some more comparison GPU vs CPU.
This other article gives a nice comparison between these two kind of processing units by explaining how GPUs work but also how they evolved and showing the differences with CPUs. It addresses topics like data flow, memory hierarchy but also for what kind of applications a GPU is useful. After all the power a GPU can developed is accessible (efficiently) only for some types of problems.
And personally, If I had to make a presentation about GPU and had the possibility to make only one reference to CPU it would be this: presenting the problems a GPU can solve efficiently vs those a CPU can handle better.
As a bonus even though it's not related directly to your presentation here is an article that put GPGPU in perspective, showing that some speedup claimed by some people are overrated (this is linked to my last point btw :))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With