Is if (a < 901)
faster than if (a <= 900)
?
Not exactly as in this simple example, but there are slight performance changes on loop complex code. I suppose this has to do something with generated machine code in case it's even true.
So === faster than == in Javascript === compares if the values and the types are the same. == compares if the values are the same, but it also does type conversions in the comparison. Those type conversions make == slower than ===.
Judging the performance of programming languages, usually C is called the leader, though Fortran is often faster. New programming languages commonly use C as their reference and they are really proud to be only so much slower than C.
No, it will not be faster on most architectures. You didn't specify, but on x86, all of the integral comparisons will be typically implemented in two machine instructions:
test
or cmp
instruction, which sets EFLAGS
Jcc
(jump) instruction, depending on the comparison type (and code layout):jne
- Jump if not equal --> ZF = 0
jz
- Jump if zero (equal) --> ZF = 1
jg
- Jump if greater --> ZF = 0 and SF = OF
Example (Edited for brevity) Compiled with $ gcc -m32 -S -masm=intel test.c
if (a < b) {
// Do something 1
}
Compiles to:
mov eax, DWORD PTR [esp+24] ; a
cmp eax, DWORD PTR [esp+28] ; b
jge .L2 ; jump if a is >= b
; Do something 1
.L2:
And
if (a <= b) {
// Do something 2
}
Compiles to:
mov eax, DWORD PTR [esp+24] ; a
cmp eax, DWORD PTR [esp+28] ; b
jg .L5 ; jump if a is > b
; Do something 2
.L5:
So the only difference between the two is a jg
versus a jge
instruction. The two will take the same amount of time.
I'd like to address the comment that nothing indicates that the different jump instructions take the same amount of time. This one is a little tricky to answer, but here's what I can give: In the Intel Instruction Set Reference, they are all grouped together under one common instruction, Jcc
(Jump if condition is met). The same grouping is made together under the Optimization Reference Manual, in Appendix C. Latency and Throughput.
Latency — The number of clock cycles that are required for the execution core to complete the execution of all of the μops that form an instruction.
Throughput — The number of clock cycles required to wait before the issue ports are free to accept the same instruction again. For many instructions, the throughput of an instruction can be significantly less than its latency
The values for Jcc
are:
Latency Throughput
Jcc N/A 0.5
with the following footnote on Jcc
:
- Selection of conditional jump instructions should be based on the recommendation of section Section 3.4.1, “Branch Prediction Optimization,” to improve the predictability of branches. When branches are predicted successfully, the latency of
jcc
is effectively zero.
So, nothing in the Intel docs ever treats one Jcc
instruction any differently from the others.
If one thinks about the actual circuitry used to implement the instructions, one can assume that there would be simple AND/OR gates on the different bits in EFLAGS
, to determine whether the conditions are met. There is then, no reason that an instruction testing two bits should take any more or less time than one testing only one (Ignoring gate propagation delay, which is much less than the clock period.)
Edit: Floating Point
This holds true for x87 floating point as well: (Pretty much same code as above, but with double
instead of int
.)
fld QWORD PTR [esp+32]
fld QWORD PTR [esp+40]
fucomip st, st(1) ; Compare ST(0) and ST(1), and set CF, PF, ZF in EFLAGS
fstp st(0)
seta al ; Set al if above (CF=0 and ZF=0).
test al, al
je .L2
; Do something 1
.L2:
fld QWORD PTR [esp+32]
fld QWORD PTR [esp+40]
fucomip st, st(1) ; (same thing as above)
fstp st(0)
setae al ; Set al if above or equal (CF=0).
test al, al
je .L5
; Do something 2
.L5:
leave
ret
Historically (we're talking the 1980s and early 1990s), there were some architectures in which this was true. The root issue is that integer comparison is inherently implemented via integer subtractions. This gives rise to the following cases.
Comparison Subtraction
---------- -----------
A < B --> A - B < 0
A = B --> A - B = 0
A > B --> A - B > 0
Now, when A < B
the subtraction has to borrow a high-bit for the subtraction to be correct, just like you carry and borrow when adding and subtracting by hand. This "borrowed" bit was usually referred to as the carry bit and would be testable by a branch instruction. A second bit called the zero bit would be set if the subtraction were identically zero which implied equality.
There were usually at least two conditional branch instructions, one to branch on the carry bit and one on the zero bit.
Now, to get at the heart of the matter, let's expand the previous table to include the carry and zero bit results.
Comparison Subtraction Carry Bit Zero Bit
---------- ----------- --------- --------
A < B --> A - B < 0 0 0
A = B --> A - B = 0 1 1
A > B --> A - B > 0 1 0
So, implementing a branch for A < B
can be done in one instruction, because the carry bit is clear only in this case, , that is,
;; Implementation of "if (A < B) goto address;"
cmp A, B ;; compare A to B
bcz address ;; Branch if Carry is Zero to the new address
But, if we want to do a less-than-or-equal comparison, we need to do an additional check of the zero flag to catch the case of equality.
;; Implementation of "if (A <= B) goto address;"
cmp A, B ;; compare A to B
bcz address ;; branch if A < B
bzs address ;; also, Branch if the Zero bit is Set
So, on some machines, using a "less than" comparison might save one machine instruction. This was relevant in the era of sub-megahertz processor speed and 1:1 CPU-to-memory speed ratios, but it is almost totally irrelevant today.
Assuming we're talking about internal integer types, there's no possible way one could be faster than the other. They're obviously semantically identical. They both ask the compiler to do precisely the same thing. Only a horribly broken compiler would generate inferior code for one of these.
If there was some platform where <
was faster than <=
for simple integer types, the compiler should always convert <=
to <
for constants. Any compiler that didn't would just be a bad compiler (for that platform).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With