Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Inverse Kinematics with OpenGL/Eigen3 : unstable Jacobian pseudoinverse

Tags:

c++

opengl

eigen

I'm trying to implement simple inverse kinematics test using OpenGL, Eigen3 and "Jacobian pseudoinverse" method.

The system works fine using "Jacobian transpose" algorithm, however, as soon as I attempt to use "pseudoinverse", joints become unstable and start jerking around (eventually they freeze completely - unless I use "Jacobian transpose" fallback computation). I've investigated the issue and turns out that in some cases Jacobian.inverse()*Jacobian has zero determinant and cannot be inverted. However, I've seen other demos on the internet (Youtube) that claim to use same method and they do not seem to have this problem. So I'm uncertain where is the cause of the issue. Code is attached below:

*.h:

struct Ik{
    float targetAngle;
    float ikLength;
    VectorXf angles;
    Vector3f root, target;
    Vector3f jointPos(int ikIndex);
    size_t size() const;
    Vector3f getEndPos(int index, const VectorXf& vec);
    void resize(size_t size);
    void update(float t);
    void render();
    Ik(): targetAngle(0), ikLength(10){
    }
};

*.cpp:

size_t Ik::size() const{
    return angles.rows();
}

Vector3f Ik::getEndPos(int index, const VectorXf& vec){
    Vector3f pos(0, 0, 0);
    while(true){
        Eigen::Affine3f t;
        float radAngle = pi*vec[index]/180.0f;
        t = Eigen::AngleAxisf(radAngle, Vector3f(-1, 0, 0))
            * Eigen::Translation3f(Vector3f(0, 0, ikLength));
        pos = t * pos;

        if (index == 0)
            break;
        index--;
    }
    return pos;
}

void Ik::resize(size_t size){
    angles.resize(size);
    angles.setZero();
}

void drawMarker(Vector3f p){
    glBegin(GL_LINES);
    glVertex3f(p[0]-1, p[1], p[2]);
    glVertex3f(p[0]+1, p[1], p[2]);
    glVertex3f(p[0], p[1]-1, p[2]);
    glVertex3f(p[0], p[1]+1, p[2]);
    glVertex3f(p[0], p[1], p[2]-1);
    glVertex3f(p[0], p[1], p[2]+1);
    glEnd();
}

void drawIkArm(float length){
    glBegin(GL_LINES);
    float f = 0.25f;
    glVertex3f(0, 0, length);
    glVertex3f(-f, -f, 0);
    glVertex3f(0, 0, length);
    glVertex3f(f, -f, 0);
    glVertex3f(0, 0, length);
    glVertex3f(f, f, 0);
    glVertex3f(0, 0, length);
    glVertex3f(-f, f, 0);
    glEnd();
    glBegin(GL_LINE_LOOP);
    glVertex3f(f, f, 0);
    glVertex3f(-f, f, 0);
    glVertex3f(-f, -f, 0);
    glVertex3f(f, -f, 0);
    glEnd();
}

void Ik::update(float t){
    targetAngle += t * pi*2.0f/10.0f;
    while (t > pi*2.0f)
        t -= pi*2.0f;
    target << 0, 8 + 3*sinf(targetAngle), cosf(targetAngle)*4.0f+5.0f;

    Vector3f tmpTarget = target;
    Vector3f targetDiff = tmpTarget - root;
    float l = targetDiff.norm();
    float maxLen = ikLength*(float)angles.size() - 0.01f;
    if (l > maxLen){
        targetDiff *= maxLen/l;
        l = targetDiff.norm();
        tmpTarget = root + targetDiff;
    }

    Vector3f endPos = getEndPos(size()-1, angles);
    Vector3f diff = tmpTarget - endPos;


    float maxAngle = 360.0f/(float)angles.size();

    for(int loop = 0; loop < 1; loop++){
        MatrixXf jacobian(diff.rows(), angles.rows());
        jacobian.setZero();
        float step = 1.0f;
        for (int i = 0; i < angles.size(); i++){
            Vector3f curRoot = root;
            if (i)
                curRoot = getEndPos(i-1, angles);
            Vector3f axis(1, 0, 0);
            Vector3f n = endPos - curRoot;
            float l = n.norm();
            if (l)
                n /= l;
            n = n.cross(axis);
            if (l)
                n *= l*step*pi/180.0f;
            //std::cout << n << "\n";

            for (int j = 0; j < 3; j++)
                jacobian(j, i) = n[j];
        }

        std::cout << jacobian << std::endl;
        MatrixXf jjt = jacobian.transpose()*jacobian;
        //std::cout << jjt << std::endl;
        float d = jjt.determinant();
        MatrixXf invJ; 
        float scale = 0.1f;
        if (!d /*|| true*/){
            invJ = jacobian.transpose();
            scale = 5.0f;
            std::cout << "fallback to jacobian transpose!\n";
        }
        else{
            invJ = jjt.inverse()*jacobian.transpose();
            std::cout << "jacobian pseudo-inverse!\n";
        }
        //std::cout << invJ << std::endl;

        VectorXf add = invJ*diff*step*scale;
        //std::cout << add << std::endl;
        float maxSpeed = 15.0f;
        for (int i = 0; i < add.size(); i++){
            float& cur = add[i];
            cur = std::max(-maxSpeed, std::min(maxSpeed, cur));
        }
        angles += add;
        for (int i = 0; i < angles.size(); i++){
            float& cur = angles[i];
            if (i)
                cur = std::max(-maxAngle, std::min(maxAngle, cur));
        }
    }
}

void Ik::render(){
    glPushMatrix();
    glTranslatef(root[0], root[1], root[2]);
    for (int i = 0; i < angles.size(); i++){
        glRotatef(angles[i], -1, 0, 0);
        drawIkArm(ikLength);
        glTranslatef(0, 0, ikLength);
    }
    glPopMatrix();
    drawMarker(target);
    for (int i = 0; i < angles.size(); i++)
        drawMarker(getEndPos(i, angles));
}

screenshot

like image 346
SigTerm Avatar asked Apr 11 '12 23:04

SigTerm


2 Answers

Sounds like your system is too stiff.

  1. Try to use a the Eigen SVD methods: see http://eigen.tuxfamily.org/dox-2.0/TutorialAdvancedLinearAlgebra.html. This is more computationally intense but also maybe more safe. If you are solving a aX=b problem it is best to use the methods dedicated to inverting a matrix. (a is your Jacobian and X is what you want).
  2. Lastly, try to cheat the conditioning on your matrix by multiplying the diagonal by a factor like 1.0001. This won't change much the solution (especially for a game) but will enable better solving.
  3. I am curious as to why you choose not to use a time iterative scheme such as RK4.

edit: I didn't read much of your extensive post so I have removed the reference to springs. I guess in your case the elements would have some form of mechanical interaction.

like image 97
Mikhail Avatar answered Nov 02 '22 13:11

Mikhail


Something like this should work.

VectorXf solveViaSVD(const MatrixXf & jacobian,const VectorXf & diff) {
     Eigen::JacobiSVD<MatrixXf> svd (jacobian,ComputeThinU | ComputeThinV);
     return svd.solve(diff);
}

The problem is, as you said, that your method fails to compute the pseudo-inverse when (J*J') is singular.

Wikipedia says : "[the pseudoinverse] is formed by replacing every nonzero diagonal entry by its reciprocal". Computing pinv(A) as inv(A'*A)*A' fails the "nonzero" point.

like image 44
sbabbi Avatar answered Nov 02 '22 13:11

sbabbi