Background
(Not required for the question, but may be useful to read)
Rolling join on data.table with duplicate keys
Odd behaviour when joining with multiple conditions
Data
library(data.table) ## using version 1.9.6
## arrival timetable
dt_arrive <- structure(list(txn_id = c(1L, 1L, 1L, 1L, 1L), place = c("place_a",
"place_a", "place_a", "place_a", "place_a"), arrival_minutes = c(515,
534, 547, 561, 581), journey_id = 1:5), .Names = c("txn_id",
"place", "arrival_minutes", "journey_id"), class = c("data.table",
"data.frame"), row.names = c(NA, -5L), sorted = c("txn_id",
"place"))
## departure timetable
dt_depart <- structure(list(txn_id = c(1L, 1L, 1L, 1L), place = c("place_a",
"place_a", "place_a", "place_a"), arrival_minutes = c(489, 507,
519, 543), journey_id = 10:13), .Names = c("txn_id", "place",
"arrival_minutes", "journey_id"), sorted = c("txn_id", "place"
), class = c("data.table", "data.frame"), row.names = c(NA, -4L
))
> dt_arrive
txn_id place arrival_minutes journey_id
1: 1 place_a 515 1
2: 1 place_a 534 2
3: 1 place_a 547 3
4: 1 place_a 561 4
5: 1 place_a 581 5
> dt_depart
txn_id place arrival_minutes journey_id
1: 1 place_a 489 10
2: 1 place_a 507 11
3: 1 place_a 519 12
4: 1 place_a 543 13
Question
I would like to join the arrivals to the departures for only those dt_depart$journey_id
that occur after dt_arrive$journey_id
in terms of arrival_minutes
(i.e. an inner join on txn_id
& place
)
For example, the output I would like is:
txn_id place journey_in_id journey_out_id journey_place_arrive journey_place_depart
1 place_a 1 12 515 519
1 place_a 1 13 515 543
1 place_a 2 13 534 543
Attempts
Using the method from the two linked questions I have constructed
setkey(dt_arrive, txn_id, place)
setkey(dt_depart, txn_id, place)
dt_join <- dt_arrive[dt_depart,
{
idx = (i.arrival_minutes > arrival_minutes)
.(journey_in_id = journey_id[idx],
journey_out_id = i.journey_id,
journey_place_arrive = arrival_minutes[idx],
journey_place_depart = i.arrival_minutes
)
},
by=.EACHI]
But this gives everything from dt_depart
, so includes NA
s in the result - which suggests a 'right join':
txn_id place journey_in_id journey_out_id journey_place_arrive journey_place_depart
1: 1 place_a NA 10 NA 489
2: 1 place_a NA 11 NA 507
3: 1 place_a 1 12 515 519
4: 1 place_a 1 13 515 543
5: 1 place_a 2 13 534 543
I've tried using nomatch=0
to force it to 'inner join', but this hasn't worked.
I can use complete.cases
to remove the NA
rows, but I was wondering if there's a way of doing this within the query itself?
Here's the unclever approach: take the cross/Cartesian join, and then filter.
merge(dt_arrive, dt_depart, allow.cartesian=TRUE)[arrival_minutes.y > arrival_minutes.x]
# txn_id place arrival_minutes.x journey_id.x arrival_minutes.y journey_id.y
# 1: 1 place_a 515 1 519 12
# 2: 1 place_a 515 1 543 13
# 3: 1 place_a 534 2 543 13
By taking the Cartesian join, we're liable to eat up a lot of memory.
A potential solution is to use foverlaps
by making some arbitrary interval columns
setDT(dt_arrive)
setDT(dt_depart)
dt_arrive[, `:=`(arrival_minutes_copy = arrival_minutes)]
## reorder columns
dt_arrive <- dt_arrive[, .(txn_id, place, journey_id, arrival_minutes, arrival_minutes_copy)]
dt_depart[, `:=`(arrival_minutes_copy = min(arrival_minutes))]
## reorder columns
dt_depart <- dt_depart[, .(txn_id, place, journey_id, arrival_minutes_copy, arrival_minutes)]
setkey(dt_arrive, arrival_minutes, arrival_minutes_copy)
setkey(dt_depart, arrival_minutes_copy, arrival_minutes)
foverlaps(dt_arrive,
dt_depart,
type = "within",
nomatch=0L)
# place txn_id journey_id arrival_minutes_copy arrival_minutes i.txn_id i.journey_id i.arrival_minutes i.arrival_minutes_copy
# 1: place_a 1 12 489 519 1 1 515 515
# 2: place_a 1 13 489 543 1 1 515 515
# 3: place_a 1 13 489 543 1 2 534 534
Benchmarking
library(microbenchmark)
fun_foverlap <- function(dt_a, dt_d){
dt <- foverlaps(dt_a,
dt_d,
type = "within",
nomatch=0L)
return(dt)
}
fun_merge <- function(dt_a, dt_d){
dt <- merge(dt_a, dt_d, allow.cartesian=TRUE)[arrival_minutes.y > arrival_minutes.x]
return(dt)
}
fun_nomatch <- function(dt_a, dt_d){
dt <- dt_a[dt_d, nomatch=0, allow.cartesian=TRUE][i.arrival_minutes > arrival_minutes]
return(dt)
}
microbenchmark(fun_foverlap(dt_arrive_foverlap, dt_depart_foverlap),
fun_merge(dt_arrive_merge, dt_depart_merge),
fun_nomatch(dt_arrive_nomatch, dt_depart_nomatch))
# Unit: microseconds
expr min lq mean median uq max neval cld
# fun_foverlap(dt_arrive_foverlap, dt_depart_foverlap) 3538.189 3717.077 3967.6648 3872.586 4006.7205 5812.355 100 c
# fun_merge(dt_arrive_merge, dt_depart_merge) 883.697 925.655 980.4159 942.877 967.9745 2223.147 100 b
# fun_nomatch(dt_arrive_nomatch, dt_depart_nomatch) 593.082 625.471 682.8975 643.034 665.4125 2077.748 100 a
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With