I'm trying to learn more about templates and have come across a problem I can't seem to solve. At the moment the class below works fine.
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
template <class T, int s>
class myArray{
public:
T* data;
inline T& operator[](const int i){return data[i];}
myArray(){
data=new T[s];
}
myArray(const myArray& other){
data=new T[s];
copy(other.data,other.data+s,data);
}
myArray& operator=(const myArray& other){
data=new T[s];
copy(other.data,other.data+s,data);
return *this;
}
~myArray(){delete [] data;}
};
If I use it:
myArray<myArray<myArray<int,10>,20>,30> a;
a is now 30x20x10 array that I can access with the normal array brackets e.g. a[5][5][5]. I wish to add a feature so that I could write:
myArray<myArray<myArray<int,10>,20>,30> a(10);
and initialise all of the entries to 10 for example. I can't work out how to do this. As I understand, each layer of myArray is constructed using the default constructor. If I changed this to something like:
myArray(int n=0){
data=new T[s];
fill(data,data+s,n); //T might not be of type int so this could fail.
}
I think this should fail when data is not of type int (i.e. on any array on dimensions > 1), however it doesn't. It works when the array is square, but if not then some of the entries aren't set to 10. Does anyone have an idea how the standard vectors class achieves this? Any help would be amazing. Thanks!
Well, try something like this:
myArray()
: data(new T[s]()) // value-initialization!
{
}
myArray(T const & val)
: data(new T[s]) // default-initialization suffices
{
std::fill(data, data + s, val);
}
If you're into variadic templates, you might cook up something even more grotesque involving variadically filled initializer lists, but I think we've done enough learning for one week.
Note the fundamental flaw in using new: Either version requires that your class T can be instantiated in some "default" state, and that it be assignable, even though we never require the default state in the second version. That's why "real" libraries separate memory allocation and object construction, and you never see a new expression unless its the placement version.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With