Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

In Tensorflow dataset api: How to use padded_batch so that a pads with a specific value without specifying the number of pads

If you don't specify a padding_values then padded_batch will autopad with 0. However, if you want a different value such as -1, you can't just set padded_batch = -1. You need to input a sequence for every slot that needs to be padded.

However, I'm working with a dataset which has random values for the array lengths, so I can't really do that, since I don't know by how many numbers I'll need to pad.

Since padding_values will automatically fill the rest of the value with 0, I hope there's some way it can do that with a different value such as '-1'.

Here is a minimal example

import math
import numpy as np
import tensorflow as tf

cells = np.array([[0,1,2,3], [2,3,4], [3,6,5,4,3], [3,9]])
mells = np.array([[0], [2], [3], [9]])
print(cells)

writer = tf.python_io.TFRecordWriter('test.tfrecords')
for index in range(mells.shape[0]):
    example = tf.train.Example(features=tf.train.Features(feature={
        'num_value':tf.train.Feature(int64_list=tf.train.Int64List(value=mells[index])),
        'list_value':tf.train.Feature(int64_list=tf.train.Int64List(value=cells[index]))
    }))
    writer.write(example.SerializeToString())
writer.close()

#Generate Samples with batch size of 2

filenames = ["test.tfrecords"]
dataset = tf.data.TFRecordDataset(filenames)
def _parse_function(example_proto):
    keys_to_features = {'num_value':tf.VarLenFeature(tf.int64),
                        'list_value':tf.VarLenFeature(tf.int64)}
    parsed_features = tf.parse_single_example(example_proto, keys_to_features)
    return tf.sparse.to_dense(parsed_features['num_value']), \
           tf.sparse.to_dense(parsed_features['list_value'])
# Parse the record into tensors.
dataset = dataset.map(_parse_function)
# Shuffle the dataset
dataset = dataset.shuffle(buffer_size=1)
# Repeat the input indefinitly
dataset = dataset.repeat()  
# Generate batches
dataset = dataset.padded_batch(2, padded_shapes=([None],[None]), padding_values=-1)
# Create a one-shot iterator
iterator = dataset.make_one_shot_iterator()
i, data = iterator.get_next()

This is the error message

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-8-65494605bf11> in <module>()
     14 dataset = dataset.repeat()
     15 # Generate batches
---> 16 dataset = dataset.padded_batch(2, padded_shapes=([None],[None]), padding_values=-1)
     17 # Create a one-shot iterator
     18 iterator = dataset.make_one_shot_iterator()

/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/dataset_ops.py in padded_batch(self, batch_size, padded_shapes, padding_values, drop_remainder)
    943     """
    944     return PaddedBatchDataset(self, batch_size, padded_shapes, padding_values,
--> 945                               drop_remainder)
    946 
    947   def map(self, map_func, num_parallel_calls=None):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/ops/dataset_ops.py in __init__(self, input_dataset, batch_size, padded_shapes, padding_values, drop_remainder)
   2526     self._padding_values = nest.map_structure_up_to(
   2527         input_dataset.output_shapes, _padding_value_to_tensor, padding_values,
-> 2528         input_dataset.output_types)
   2529     self._drop_remainder = ops.convert_to_tensor(
   2530         drop_remainder, dtype=dtypes.bool, name="drop_remainder")

/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in map_structure_up_to(shallow_tree, func, *inputs)
    465     raise ValueError("Cannot map over no sequences")
    466   for input_tree in inputs:
--> 467     assert_shallow_structure(shallow_tree, input_tree)
    468 
    469   # Flatten each input separately, apply the function to corresponding elements,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/data/util/nest.py in assert_shallow_structure(shallow_tree, input_tree, check_types)
    299       raise TypeError(
    300           "If shallow structure is a sequence, input must also be a sequence. "
--> 301           "Input has type: %s." % type(input_tree))
    302 
    303     if check_types and not isinstance(input_tree, type(shallow_tree)):

TypeError: If shallow structure is a sequence, input must also be a sequence. Input has type: <class 'int'>.

The problem line is

# Generate batches
dataset = dataset.padded_batch(2, padded_shapes=([None],[None]), padding_values=-1)

if you remove padding_values, it generates batches with padded zeros no problem

with tf.Session() as sess:
    print(sess.run([i, data]))
    print(sess.run([i, data]))

[array([[0],
       [2]]), array([[0, 1, 2, 3],
       [2, 3, 4, 0]])]
[array([[3],
       [9]]), array([[3, 6, 5, 4, 3],
       [3, 9, 0, 0, 0]])]
like image 588
SantoshGupta7 Avatar asked Dec 27 '18 01:12

SantoshGupta7


People also ask

How do I iterate over a Tensorflow dataset?

To iterate over the dataset several times, use . repeat() . We can enumerate each batch by using either Python's enumerator or a build-in method. The former produces a tensor, which is recommended.

Which dataset is used to instantiate a dataset object which is comprised of lines from one or more text files?

Creates a Dataset comprising lines from one or more text files.

What does TF data dataset From_tensor_slices do?

from_tensor_slices() It removes the first dimension and use it as a dataset dimension.

What is Tensorflow prefetch?

Prefetching. Prefetching overlaps the preprocessing and model execution of a training step. While the model is executing training step s , the input pipeline is reading the data for step s+1 . Doing so reduces the step time to the maximum (as opposed to the sum) of the training and the time it takes to extract the data ...


1 Answers

You should change padding_values.

dataset = dataset.padded_batch(2, padded_shapes=([None],[None])
                               , padding_values=(tf.constant(-1, dtype=tf.int64)
                                                 ,tf.constant(-1, dtype=tf.int64)))
with tf.Session() as sess:
    print(sess.run([i, data]))
    print(sess.run([i, data]))

[array([[0],
       [2]]), array([[ 0,  1,  2,  3],
       [ 2,  3,  4, -1]])]
[array([[3],
       [9]]), array([[ 3,  6,  5,  4,  3],
       [ 3,  9, -1, -1, -1]])]

Explain

Every entry given in padding_values represents the padding values to use for the respective components. This means that the length of padded_shapes should be equal to the length of padding_values. The latter is used for padding the entire length for every array in here,and the former has the same length and does not need padding -1.For example:

dataset = dataset.padded_batch(2, padded_shapes=([None],[None])
                               , padding_values=(tf.constant(-1, dtype=tf.int64)
                                                 ,tf.constant(-2, dtype=tf.int64)))
with tf.Session() as sess:
    print(sess.run([i, data]))
    print(sess.run([i, data]))

[array([[0],
       [2]]), array([[ 0,  1,  2,  3],
       [ 2,  3,  4, -2]])]
[array([[3],
       [9]]), array([[ 3,  6,  5,  4,  3],
       [ 3,  9, -2, -2, -2]])]
like image 180
giser_yugang Avatar answered Nov 01 '22 17:11

giser_yugang