I'm trying to understand what kind of memory hit I'll incur by creating a large array of objects. I know that each object - when created - will be given space in the HEAP for member variables, and I think that all the code for every function that belongs to that type of object exists in the code segment in memory - permanently.
Is that right?
So if I create 100 objects in C++, I can estimate that I will need space for all the member variables that object owns multiplied by 100 (possible alignment issues here), and then I need space in the code segment for a single copy of the code for each member function for that type of object( not 100 copies of the code ).
Do virtual functions, polymorphism, inheritance factor into this somehow?
What about objects from dynamically linked libraries? I assume dlls get their own stack, heap, code and data segments.
Simple example (may not be syntactically correct):
// parent class
class Bar
{
public:
Bar() {};
~Bar() {};
// pure virtual function
virtual void doSomething() = 0;
protected:
// a protected variable
int mProtectedVar;
}
// our object class that we'll create multiple instances of
class Foo : public Bar
{
public:
Foo() {};
~Foo() {};
// implement pure virtual function
void doSomething() { mPrivate = 0; }
// a couple public functions
int getPrivateVar() { return mPrivate; }
void setPrivateVar(int v) { mPrivate = v; }
// a couple public variables
int mPublicVar;
char mPublicVar2;
private:
// a couple private variables
int mPrivate;
char mPrivateVar2;
}
About how much memory should 100 dynamically allocated objects of type Foo take including room for the code and all variables?
The short answer: It will be stored in the text or code section of the binary only once irrespective of the number of instances of the class created.
In Java, when we only declare a variable of a class type, only a reference is created (memory is not allocated for the object). To allocate memory to an object, we must use new(). So the object is always allocated memory on the heap (See this for more details).
This is because in machine code, a function is referenced by its location in RAM, not its name. The compiler-output object file may have a func entry in its symbol table referring to this block of machine code, but the symbol table is read by software, not something the CPU hardware can decode and run directly.
Functions are objects. Therefore, the function's identifier is in the stack, and the function's value is stored in the heap. A function creates an activation object when it's called.
It's not necessarily true that "each object - when created - will be given space in the HEAP for member variables". Each object you create will take some nonzero space somewhere for its member variables, but where is up to how you allocate the object itself. If the object has automatic (stack) allocation, so too will its data members. If the object is allocated on the free store (heap), so too will be its data members. After all, what is the allocation of an object other than that of its data members?
If a stack-allocated object contains a pointer or other type which is then used to allocate on the heap, that allocation will occur on the heap regardless of where the object itself was created.
For objects with virtual functions, each will have a vtable pointer allocated as if it were an explicitly-declared data member within the class.
As for member functions, the code for those is likely no different from free-function code in terms of where it goes in the executable image. After all, a member function is basically a free function with an implicit "this" pointer as its first argument.
Inheritance doesn't change much of anything.
I'm not sure what you mean about DLLs getting their own stack. A DLL is not a program, and should have no need for a stack (or heap), as objects it allocates are always allocated in the context of a program which has its own stack and heap. That there would be code (text) and data segments in a DLL does make sense, though I am not expert in the implementation of such things on Windows (which I assume you're using given your terminology).
Code exists in the text segment, and how much code is generated based on classes is reasonably complex. A boring class with no virtual inheritance ostensibly has some code for each member function (including those that are implicitly created when omitted, such as copy constructors) just once in the text segment. The size of any class instance is, as you've stated, generally the sum size of the member variables.
Then, it gets somewhat complex. A few of the issues are...
inline
code. So even though it might be a simple function, if it's used in many places and chosen for inlining, a lot of code can be generated (spread all over the program code).When programming, use the sizeof
operator to determine object size - never hard code. Use the rough metric of "Sum of member variable size + some VTABLE (if it exists)" when estimating how expensive large groups of instances will be, and don't worry overly about the size of the code. Optimise later, and if any of the non-obvious issues come back to mean something, I'll be rather surprised.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With