The simplest way of defining my problem is that I'm trying to implement a mechanism that would check whether the same string had already been used (or a pair (number, string)). I would like this mechanism to be implemented in a smart way using C preprocessor. I would also like that this mechanism gave me compile errors when there is a conflict or run-time errors in Debug mode (by checking assertions). We don't want the developer to make a mistake when adding a message, as every message should be unique. I know that it could be done by calculating a hash or for example crc/md5 but this mechanism would be conflict-vulnerable which I need to avoid. It is crucial that every message can be used only once.
Example behaviour of this mechanism:
addMessage(1, "Message1") //OK
addMessage(2, "Message2") //OK
.
.
.
addMessage(N, "MessageN") //OK
addMessage(2, "Message2") //Compile error, Message2 has already been used
Alternative behaviour (when Debugging code):
addMessage(1, "Message1") //OK
addMessage(2, "Message2") //OK
.
.
.
addMessage(N, "MessageN") //OK
addMessage(2, "Message2") //Assertion failed, because Message2 has already been used
The preferred way of doing it would be smart usage of #define and #undef directives. In general the preprocessor should be used in a smart way (I am not sure if this is possible) maybe it can be achieved by appropriate combinations of macros? Any C preprocessor hacker that could help me solve this problem?
//EDIT: I need those messages to be unique globally, not only inside one code block (like function of if-statement).
//EDIT2: The best description of the problem would be that I have 100 different source files and I would like to check with a preprocessor (or possibly other mechanism other than parsing source files with a script at a start of the compilation every-time, which would be very time-consuming and would add another stage to an enough complicated project) if a string (or a preprocessor definition) was used more than one time. I still have no idea how to do it (I know it may not be possible at all but I hope it actually is).
This will give an error on duplicate strings:
constexpr bool isequal(char const *one, char const *two) {
return (*one && *two) ? (*one == *two && isequal(one + 1, two + 1))
: (!*one && !*two);
}
constexpr bool isunique(const char *test, const char* const* list)
{
return *list == 0 || !isequal(test, *list) && isunique(test, list + 1);
}
constexpr int no_duplicates(const char* const* list, int idx)
{
return *list == 0 ? -1 : (isunique(*list, list + 1) ? no_duplicates(list + 1, idx + 1) : idx);
}
template <int V1, int V2> struct assert_equality
{
static const char not_equal_warning = V1 + V2 + 1000;
};
template <int V> struct assert_equality<V, V>
{
static const bool not_equal_warning = 0;
};
constexpr const char* l[] = {"aa", "bb", "aa", 0};
static_assert(assert_equality<no_duplicates(l, 0), -1>::not_equal_warning == 0, "duplicates found");
Output from g++:
g++ -std=c++11 unique.cpp
unique.cpp: In instantiation of ‘const char assert_equality<0, -1>::not_equal_warning’:
unique.cpp:29:57: required from here
unique.cpp:20:53: warning: overflow in implicit constant conversion [-Woverflow]
unique.cpp:29:1: error: static assertion failed: duplicates found
The first template parameter (in this case 0) to 'assert_equality' tells you the fist position of a duplicate string.
I am not sure that it is easily doable using the standard C++ preprocessor (I guess that it is not). You might use some other preprocessor (e.g. GPP)
You could make it the other way: generate some X-macro "header" file from some other source (using e.g. a tiny awk
script, which would verify the unicity). Then customize your build (e.g. add some rules to your Makefile
) to run that generating script to produce the header file.
Alternatively, if you insist that processing being done inside the compiler, and if your compiler is a recent GCC, consider customizing GCC with MELT (e.g. by adding appropriate builtins or pragmas doing the job).
In the previous century, I hacked a small Emacs function to do a similar job (uniquely numbering error messages) within the emacs
editor (renumbering some #define
-s before saving the C file).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With