Let's say I have 2 sets of values for P_A, P_B, P_C as below
#define X_P_A 2
#define X_P_B 3
#define X_P_C 4
#define Y_P_A 5
#define Y_P_B 6
#define Y_P_C 7
There are 3 types of users:- once that only need X variants, once that only need Y variants and once those may need both.
eg
#ifdef X
#define P_A X_P_A
#define P_B X_P_B
#define P_C X_P_C
#endif
#ifdef Y
#define P_A Y_P_A
#define P_B Y_P_B
#define P_C Y_P_C
#endif
Users that need both will make the decision at run time and call X_P_<> or Y_P_<> as needed.
Is there a way to make it simpler, so that I don't have to write conditional macros for each field
ifdef X
// do something magical does defines all P_<> to X_P_<>
#endif
I know it sounds stupid. You may ask why not just use X_P_<> variants on X. I am just trying to understand if it is possible.
I am okay with changing the way the macros the defined. Is something similar to below code possible : (problem with below code is that compilation fails because #if not allowed within #define)
#define A 1
#define B 2
#define C 3
/* Not a correct #define macro */
#define X_P(x) \
#if(x == A) 2 \
#elif(x == B) 3 \
#elif(x == C) 4 \
#endif
#ifdef X
#define P(x) X_P(x)
#endif
You could do it with one variant of X-Macros:
#define IMPLEMENT(X) \
X(P_A, 1, 5) \
X(P_B, 2, 6) \
X(P_C, 3, 7)
enum {
// Just one
#define X1_P(n, x, y) n = x,
IMPLEMENT(X1_P)
// Both
#define X2_P(n, x, y) X_##n = x,
#define Y2_P(n, x, y) Y_##n = y,
IMPLEMENT(X2_P)
IMPLEMENT(Y2_P)
DUMMY // Just in case compiler is strict about trailing comma
};
Which would expand to:
enum {
P_A = 1, P_B = 2, P_C = 3,
X_P_A = 1, X_P_B = 2, X_P_C = 3,
Y_P_A = 5, Y_P_B = 6, Y_P_C = 7,
DUMMY
};
#define X_P(x) ((x) - 0x10 + 1) // 1 is 0x31 and A is 0x41 hence A will give 0x41 - 0x10 + 1 = 0x32
#define Y_P(y) ((y) - 0x10 + 5) // same logic applies
Would it be what you are looking for ? Not fully answering your question though
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With