I'm having trouble synchronizing a master thread to a recently started child thread.
What I want to do is:
My first attempt was something like:
typedef struct threaddata_ {
int running;
} threaddata_t;
void*child_thread(void*arg) {
threaddata_t*x=(threaddata_t)arg;
/* ... INITIALIZE ... */
x->running=1; /* signal that we are running */
/* CHILD THREAD BODY */
return 0;
}
void start_thread(void) {
threaddata_t*x=(threaddata_t*)malloc(sizeof(threaddata_t));
x->running=0;
int result=pthread_create(&threadid, 0, child_thread, &running);
while(!x->running) usleep(100); /* wait till child is initialized */
/* MAIN THREAD BODY */
}
Now I didn't like this at all, because it forces the main thread to sleep for probably a longer period than necessary. So I did a 2nd attempt, using mutexes&conditions
typedef struct threaddata_ {
pthread_mutex_t x_mutex;
pthread_cond_t x_cond;
} threaddata_t;
void*child_thread(void*arg) {
threaddata_t*x=(threaddata_t)arg;
/* ... INITIALIZE ... */
pthread_cond_signal(&x->x_cond); /* signal that we are running */
/* CHILD THREAD BODY */
return 0;
}
void start_thread(void) {
threaddata_t*x=(threaddata_t*)malloc(sizeof(threaddata_t));
pthread_mutex_init(&x->x_mutex, 0);
pthread_cond_init (&x->x_cond , 0);
pthread_mutex_lock(&x->x_mutex);
int result=pthread_create(&threadid, 0, child_thread, &running);
if(!result)pthread_cond_wait(&x->x_cond, &x->x_mutex);
pthread_mutex_unlock(&x->x_mutex);
/* MAIN THREAD BODY */
}
This seemed more sane than the first attempt (using proper signals rather than rolling my own wait loop), until I discovered, that this includes a race condition: If the child thread has finished the initialization fast enough (before the main thread waits for the condition), it will deadlock the main thread.
I guess that my case is not so uncommon, so there must be a really easy solution, but I cannot see it right now.
Proper way of condvar/mutex pair usage:
bool initialised = false;
mutex mt;
convar cv;
void *thread_proc(void *)
{
...
mt.lock();
initialised = true;
cv.signal();
mt.unlock();
}
int main()
{
...
mt.lock();
while(!initialised) cv.wait(mt);
mt.unlock();
}
This algorithm avoids any possible races. You can use any complex condition modified when mutex locked (instead of the simple !initialised).
The correct tool for that are sem_t
. The main
thread would initialize them with 0
and wait until it receives a token from the newly launched thread.
BTW your mutex/cond solution has a race condition because the child thread is not locking the mutex.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With