I am currently working on a pretty big file containing stops/go of several machinas (about 60) + their production over a long period (more than 60 000 rows). Stops are indexed by "-1" and go by "1" :
**Date n1_prod n1_stops n2_prod n2_stops n3_prod
1 2011-12-13 00:00:00 2 1 0 -1 14
2 2011-12-13 01:00:00 10 1 -10 -1 24
3 2011-12-13 02:00:00 24 1 -5 -1 23
4 2011-12-13 03:00:00 25 1 0 -1 22
5 2011-12-13 04:00:00 23 1 12 1 13
6 2011-12-13 05:00:00 0 -1 11 1 17
7 2011-12-13 06:00:00 -2 -1 21 1 18
My purpose is to get for each device a new column cumulative production per stop/go (possibly on a new df). For device n°1 for instance it would be:
**Date n1_prod n1_stops n1_agprod
1 2011-12-13 00:00:00 2 1 2
2 2011-12-13 01:00:00 10 1 12
3 2011-12-13 02:00:00 24 1 36
4 2011-12-13 03:00:00 25 1 61
5 2011-12-13 04:00:00 23 1 84
6 2011-12-13 05:00:00 0 -1 0
7 2011-12-13 06:00:00 -2 -1 -2
For one column, I can get the desire result using :
df<-as_tibble(df)%>%
group_by(n1_stops) %>%
dplyr::mutate(n1_agprod= cumsum(n1_prod))
But I don't know how to generalize it, since I need a different column each time for groups and I am currently not able to replace the name of the column by the column index...
Do you know how I can manage that ?
You can split based on the prefix of every column name and apply the cumsum
there, i.e.
sapply(split.default(df[-1], sub('_.*','',names(df[-1]))),
function(i) ave(i[[1]], i[[2]], FUN = cumsum))
# n1 n2
#[1,] 2 0
#[2,] 12 -10
#[3,] 36 -15
#[4,] 61 -15
#[5,] 84 12
#[6,] 0 23
#[7,] -2 44
We can first separate columns which end with "prod"
and "stop"
, then use mapply
and ave
to cumsum
for each group and create new columns.
prod_cols <- grep("prod$", names(df))
stop_cols <- grep("stops$", names(df))
df[paste0("agprod", 1:length(prod_cols))] <-
mapply(ave, df[prod_cols], df[stop_cols], MoreArgs = list(FUN = cumsum))
df
# Date n1_prod n1_stops n2_prod n2_stops agprod1 agprod2
#1 2011-12-1300:00:00 2 1 0 -1 2 0
#2 2011-12-1301:00:00 10 1 -10 -1 12 -10
#3 2011-12-1302:00:00 24 1 -5 -1 36 -15
#4 2011-12-1303:00:00 25 1 0 -1 61 -15
#5 2011-12-1304:00:00 23 1 12 1 84 12
#6 2011-12-1305:00:00 0 -1 11 1 0 23
#7 2011-12-1306:00:00 -2 -1 21 1 -2 44
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With