I need to use an atomic variable in C as this variable is accessed across different threads. Don't want a race condition.
My code is running on CentOS. What are my options?
In C, _Atomic is used as a type specifier. It is used to avoid the race condition if more than one thread attempts to update a variable simultaneously. It is defined in the stdatomic.
Atomics as part of the C language are an optional feature that is available since C11. Their purpose is to ensure race-free access to variables that are shared between different threads. Without atomic qualification, the state of a shared variable would be undefined if two threads access it concurrently.
The atomic variable allows us to perform an atomic operation on a variable. Atomic variables minimize synchronization and help avoid memory consistency errors. Hence, it ensures synchronization.
On objects without an atomic type, standard never defines ++ as an atomic operation. C11 defines atomic types in stdatomic. h. If you have an object with an atomic type, a postfix and prefix operators ++ will define an atomic operation as: read-modify-write operation with memory_order_seq_cst memory order semantics.
C11 atomic primitives
http://en.cppreference.com/w/c/language/atomic
_Atomic const int * p1; // p is a pointer to an atomic const int
const atomic_int * p2; // same
const _Atomic(int) * p3; // same
Added in glibc 2.28. Tested in Ubuntu 18.04 (glibc 2.27) by compiling glibc from source: Multiple glibc libraries on a single host Later also tested on Ubuntu 20.04, glibc 2.31.
Example adapted from: https://en.cppreference.com/w/c/language/atomic
main.c
#include <stdio.h>
#include <threads.h>
#include <stdatomic.h>
atomic_int acnt;
int cnt;
int f(void* thr_data)
{
(void)thr_data;
for(int n = 0; n < 1000; ++n) {
++cnt;
++acnt;
// for this example, relaxed memory order is sufficient, e.g.
// atomic_fetch_add_explicit(&acnt, 1, memory_order_relaxed);
}
return 0;
}
int main(void)
{
thrd_t thr[10];
for(int n = 0; n < 10; ++n)
thrd_create(&thr[n], f, NULL);
for(int n = 0; n < 10; ++n)
thrd_join(thr[n], NULL);
printf("The atomic counter is %u\n", acnt);
printf("The non-atomic counter is %u\n", cnt);
}
Compile and run:
gcc -ggdb3 -O0 -std=c99 -Wall -Wextra -pedantic -o main.out main.c -pthread
./main.out
Possible output:
The atomic counter is 10000
The non-atomic counter is 8644
The non-atomic counter is very likely to be smaller than the atomic one due to racy access across threads to the non atomic variable.
Disassembly analysis at: How do I start threads in plain C?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With