Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to test tensorflow cifar10 cnn tutorial model

I am relatively new to machine-learning and currently have almost no experiencing in developing it.

So my Question is: after training and evaluating the cifar10 dataset from the tensorflow tutorial I was wondering how could one test it with sample images?

I could train and evaluate the Imagenet tutorial from the caffe machine-learning framework and it was relatively easy to use the trained model on custom applications using the python API.

Any help would be very appreciated!

like image 358
Twimnox Avatar asked Nov 18 '15 15:11

Twimnox


People also ask

How do I find learnable parameters on CNN?

CONV layer: This is where CNN learns, so certainly we'll have weight matrices. To calculate the learnable parameters here, all we have to do is just multiply the by the shape of width m, height n, previous layer's filters d and account for all such filters k in the current layer.


1 Answers

This isn't 100% the answer to the question, but it's a similar way of solving it, based on a MNIST NN training example suggested in the comments to the question.

Based on the TensorFlow begginer MNIST tutorial, and thanks to this tutorial, this is a way of training and using your Neural Network with custom data.

Please note that similar should be done for tutorials such as the CIFAR10, as @Yaroslav Bulatov mentioned in the comments.

import input_data
import datetime
import numpy as np
import tensorflow as tf
import cv2
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
from random import randint


mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

x = tf.placeholder("float", [None, 784])

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W) + b)
y_ = tf.placeholder("float", [None,10])

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

#Train our model
iter = 1000
for i in range(iter):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

#Evaluationg our model:
correct_prediction=tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
print "Accuracy: ", sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})

#1: Using our model to classify a random MNIST image from the original test set:
num = randint(0, mnist.test.images.shape[0])
img = mnist.test.images[num]

classification = sess.run(tf.argmax(y, 1), feed_dict={x: [img]})
'''
#Uncomment this part if you want to plot the classified image.
plt.imshow(img.reshape(28, 28), cmap=plt.cm.binary)
plt.show()
'''
print 'Neural Network predicted', classification[0]
print 'Real label is:', np.argmax(mnist.test.labels[num])


#2: Using our model to classify MNIST digit from a custom image:

# create an an array where we can store 1 picture
images = np.zeros((1,784))
# and the correct values
correct_vals = np.zeros((1,10))

# read the image
gray = cv2.imread("my_digit.png", 0 ) #0=cv2.CV_LOAD_IMAGE_GRAYSCALE #must be .png!

# rescale it
gray = cv2.resize(255-gray, (28, 28))

# save the processed images
cv2.imwrite("my_grayscale_digit.png", gray)
"""
all images in the training set have an range from 0-1
and not from 0-255 so we divide our flatten images
(a one dimensional vector with our 784 pixels)
to use the same 0-1 based range
"""
flatten = gray.flatten() / 255.0
"""
we need to store the flatten image and generate
the correct_vals array
correct_val for a digit (9) would be
[0,0,0,0,0,0,0,0,0,1]
"""
images[0] = flatten


my_classification = sess.run(tf.argmax(y, 1), feed_dict={x: [images[0]]})

"""
we want to run the prediction and the accuracy function
using our generated arrays (images and correct_vals)
"""
print 'Neural Network predicted', my_classification[0], "for your digit"

For further image conditioning (digits should be completely dark in a white background) and better NN training (accuracy>91%) please check the Advanced MNIST tutorial from TensorFlow or the 2nd tutorial i've mentioned.

like image 69
Twimnox Avatar answered Sep 21 '22 13:09

Twimnox