How to test if a line segment intersects an axis-aligned rectange in 2D? The segment is defined with its two ends: p1, p2. The rectangle is defined with top-left and bottom-right points.
Get the dot product of all 4 vertices (the corners of the rectangle) with the direction vector of the line segment. If all 4 have values of the same sign, then all the vertices lie on the same side of the line (not the line segment, but the infinite line) and thus the line does not intersect the rectangle.
Line crosses the polygon if and only if it crosses one of its edges (ignoring for a second the cases when it passes through a vertex). So, in your case you just need to test all edges of your polygon against your line and see if there's an intersection.
For intersection, each determinant on the left must have the opposite sign of the one to the right, but there need not be any relationship between the two lines. You are basically checking each point of a segment against the other segment to make sure they lie on opposite sides of the line defined by the other segment.
The original poster wanted to DETECT an intersection between a line segment and a polygon. There was no need to LOCATE the intersection, if there is one. If that's how you meant it, you can do less work than Liang-Barsky or Cohen-Sutherland:
Let the segment endpoints be p1=(x1 y1) and p2=(x2 y2).
Let the rectangle's corners be (xBL yBL) and (xTR yTR).
Then all you have to do is
A. Check if all four corners of the rectangle are on the same side of the line. The implicit equation for a line through p1 and p2 is:
F(x y) = (y2-y1)*x + (x1-x2)*y + (x2*y1-x1*y2)
If F(x y) = 0, (x y) is ON the line.
If F(x y) > 0, (x y) is "above" the line.
If F(x y) < 0, (x y) is "below" the line.
Substitute all four corners into F(x y). If they're all negative or all positive, there is no intersection. If some are positive and some negative, go to step B.
B. Project the endpoint onto the x axis, and check if the segment's shadow intersects the polygon's shadow. Repeat on the y axis:
If (x1 > xTR and x2 > xTR), no intersection (line is to right of rectangle).
If (x1 < xBL and x2 < xBL), no intersection (line is to left of rectangle).
If (y1 > yTR and y2 > yTR), no intersection (line is above rectangle).
If (y1 < yBL and y2 < yBL), no intersection (line is below rectangle).
else, there is an intersection. Do Cohen-Sutherland or whatever code was mentioned in the other answers to your question.
You can, of course, do B first, then A.
Alejo
Wrote quite simple and working solution:
bool SegmentIntersectRectangle(double a_rectangleMinX,
double a_rectangleMinY,
double a_rectangleMaxX,
double a_rectangleMaxY,
double a_p1x,
double a_p1y,
double a_p2x,
double a_p2y)
{
// Find min and max X for the segment
double minX = a_p1x;
double maxX = a_p2x;
if(a_p1x > a_p2x)
{
minX = a_p2x;
maxX = a_p1x;
}
// Find the intersection of the segment's and rectangle's x-projections
if(maxX > a_rectangleMaxX)
{
maxX = a_rectangleMaxX;
}
if(minX < a_rectangleMinX)
{
minX = a_rectangleMinX;
}
if(minX > maxX) // If their projections do not intersect return false
{
return false;
}
// Find corresponding min and max Y for min and max X we found before
double minY = a_p1y;
double maxY = a_p2y;
double dx = a_p2x - a_p1x;
if(Math::Abs(dx) > 0.0000001)
{
double a = (a_p2y - a_p1y) / dx;
double b = a_p1y - a * a_p1x;
minY = a * minX + b;
maxY = a * maxX + b;
}
if(minY > maxY)
{
double tmp = maxY;
maxY = minY;
minY = tmp;
}
// Find the intersection of the segment's and rectangle's y-projections
if(maxY > a_rectangleMaxY)
{
maxY = a_rectangleMaxY;
}
if(minY < a_rectangleMinY)
{
minY = a_rectangleMinY;
}
if(minY > maxY) // If Y-projections do not intersect return false
{
return false;
}
return true;
}
Since your rectangle is aligned, Liang-Barsky might be a good solution. It is faster than Cohen-Sutherland, if speed is significant here.
Siggraph explanation
Another good description
And of course, Wikipedia
You could also create a rectangle out of the segment and test if the other rectangle collides with it, since it is just a series of comparisons. From pygame source:
def _rect_collide(a, b):
return a.x + a.w > b.x and b.x + b.w > a.x and \
a.y + a.h > b.y and b.y + b.h > a.y
Use the Cohen-Sutherland algorithm.
It's used for clipping but can be slightly tweaked for this task. It divides 2D space up into a tic-tac-toe board with your rectangle as the "center square".
then it checks to see which of the nine regions each of your line's two points are in.
Or just use/copy the code already in the Java method
java.awt.geom.Rectangle2D.intersectsLine(double x1, double y1, double x2, double y2)
Here is the method after being converted to static for convenience:
/**
* Code copied from {@link java.awt.geom.Rectangle2D#intersectsLine(double, double, double, double)}
*/
public class RectangleLineIntersectTest {
private static final int OUT_LEFT = 1;
private static final int OUT_TOP = 2;
private static final int OUT_RIGHT = 4;
private static final int OUT_BOTTOM = 8;
private static int outcode(double pX, double pY, double rectX, double rectY, double rectWidth, double rectHeight) {
int out = 0;
if (rectWidth <= 0) {
out |= OUT_LEFT | OUT_RIGHT;
} else if (pX < rectX) {
out |= OUT_LEFT;
} else if (pX > rectX + rectWidth) {
out |= OUT_RIGHT;
}
if (rectHeight <= 0) {
out |= OUT_TOP | OUT_BOTTOM;
} else if (pY < rectY) {
out |= OUT_TOP;
} else if (pY > rectY + rectHeight) {
out |= OUT_BOTTOM;
}
return out;
}
public static boolean intersectsLine(double lineX1, double lineY1, double lineX2, double lineY2, double rectX, double rectY, double rectWidth, double rectHeight) {
int out1, out2;
if ((out2 = outcode(lineX2, lineY2, rectX, rectY, rectWidth, rectHeight)) == 0) {
return true;
}
while ((out1 = outcode(lineX1, lineY1, rectX, rectY, rectWidth, rectHeight)) != 0) {
if ((out1 & out2) != 0) {
return false;
}
if ((out1 & (OUT_LEFT | OUT_RIGHT)) != 0) {
double x = rectX;
if ((out1 & OUT_RIGHT) != 0) {
x += rectWidth;
}
lineY1 = lineY1 + (x - lineX1) * (lineY2 - lineY1) / (lineX2 - lineX1);
lineX1 = x;
} else {
double y = rectY;
if ((out1 & OUT_BOTTOM) != 0) {
y += rectHeight;
}
lineX1 = lineX1 + (y - lineY1) * (lineX2 - lineX1) / (lineY2 - lineY1);
lineY1 = y;
}
}
return true;
}
}
A quick Google search popped up a page with C++ code for testing the intersection.
Basically it tests the intersection between the line, and every border or the rectangle.
Rectangle and line intersection code
Here's a javascript version of @metamal's answer
var isRectangleIntersectedByLine = function (
a_rectangleMinX,
a_rectangleMinY,
a_rectangleMaxX,
a_rectangleMaxY,
a_p1x,
a_p1y,
a_p2x,
a_p2y) {
// Find min and max X for the segment
var minX = a_p1x
var maxX = a_p2x
if (a_p1x > a_p2x) {
minX = a_p2x
maxX = a_p1x
}
// Find the intersection of the segment's and rectangle's x-projections
if (maxX > a_rectangleMaxX)
maxX = a_rectangleMaxX
if (minX < a_rectangleMinX)
minX = a_rectangleMinX
// If their projections do not intersect return false
if (minX > maxX)
return false
// Find corresponding min and max Y for min and max X we found before
var minY = a_p1y
var maxY = a_p2y
var dx = a_p2x - a_p1x
if (Math.abs(dx) > 0.0000001) {
var a = (a_p2y - a_p1y) / dx
var b = a_p1y - a * a_p1x
minY = a * minX + b
maxY = a * maxX + b
}
if (minY > maxY) {
var tmp = maxY
maxY = minY
minY = tmp
}
// Find the intersection of the segment's and rectangle's y-projections
if(maxY > a_rectangleMaxY)
maxY = a_rectangleMaxY
if (minY < a_rectangleMinY)
minY = a_rectangleMinY
// If Y-projections do not intersect return false
if(minY > maxY)
return false
return true
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With