I have data that looks like this (note dates are in DD-MM-YYYY format):
ID date drug score
A 28/08/2016 2 3
A 29/08/2016 1 4
A 30/08/2016 2 4
A 2/09/2016 2 4
A 3/09/2016 1 4
A 4/09/2016 2 4
B 8/08/2016 1 3
B 9/08/2016 2 4
B 10/08/2016 2 3
B 11/08/2016 1 3
C 30/11/2016 2 4
C 2/12/2016 1 5
C 3/12/2016 2 1
C 5/12/2016 1 4
C 6/12/2016 2 4
C 8/12/2016 1 2
C 9/12/2016 1 2
For 'drug': 1=drug taken, 2=no drug taken.
I need to summarise for each ID:
If a drug was taken 2 days in a row (eg the last 2 rows of the example) then these scores should not be counted in the -1day or +1day calculations (i.e., each of the last two rows would contribute to the 0day score but would not contribute to the other metrics).
So for this example data, I would need an output table like this:
-1day 0day +1day
A 3.5 4 4
B 3 3 4
C 3.25 2.5
Note that there is not a record for all dates and that the -1day and +1day calculations need to be based on the actual dates and not just the records in the dataset.
I have no idea how to do this.
I also have two additional bonus questions:
I will most likely also need to calculate -2day and +2day scores, so need to be able to adapt an answer to do that.
How could I calculate a NoDrug score, which is the mean of all days that are not within 5 days of a drug taking day.
Here is code to generate a dataframe with this example data:
data<-data.frame(ID=c("A","A","A","A","A","A","B","B","B","B","C","C","C","C","C","C","C"),
date=as.Date(c("28/08/2016","29/08/2016","30/08/2016","2/09/2016","3/09/2016","4/09/2016","8/08/2016","9/08/2016","10/08/2016","11/08/2016","30/11/2016","2/12/2016","3/12/2016","5/12/2016","6/12/2016","8/12/2016","9/12/2016"),format= "%d/%m/%Y"),
drug=c(2,1,2,2,1,2,1,2,2,1,2,1,2,1,2,1,1),
score=c(3,4,4,4,4,4,3,4,3,3,4,5,1,4,4,2,2))
You can use dplyr to get this:
df <- data.frame(
ID=c("A","A","A","A","A","A","B","B","B","B","C","C","C","C","C","C","C"),
date=as.Date(c("28/08/2016","29/08/2016","30/08/2016","2/09/2016","3/09/2016","4/09/2016","8/08/2016","9/08/2016","10/08/2016","11/08/2016","30/11/2016","2/12/2016","3/12/2016","5/12/2016","6/12/2016","8/12/2016","9/12/2016"),format= "%d/%m/%Y"),
drug=c(2,1,2,2,1,2,1,2,2,1,2,1,2,1,2,1,1),
score=c(3,4,4,4,4,4,3,4,3,3,4,5,1,4,4,2,2)
)
df
#> ID date drug score
#> 1 A 2016-08-28 2 3
#> 2 A 2016-08-29 1 4
#> 3 A 2016-08-30 2 4
#> 4 A 2016-09-02 2 4
#> 5 A 2016-09-03 1 4
#> 6 A 2016-09-04 2 4
#> 7 B 2016-08-08 1 3
#> 8 B 2016-08-09 2 4
#> 9 B 2016-08-10 2 3
#> 10 B 2016-08-11 1 3
#> 11 C 2016-11-30 2 4
#> 12 C 2016-12-02 1 5
#> 13 C 2016-12-03 2 1
#> 14 C 2016-12-05 1 4
#> 15 C 2016-12-06 2 4
#> 16 C 2016-12-08 1 2
#> 17 C 2016-12-09 1 2
A nice way to solve these sorts of problems, making rows implicitly missing observations explicitly missing, is to use tidyr::complete
library(dplyr)
library(tidyr)
df1 <- df %>%
group_by(ID) %>%
complete(date = seq(min(date), max(date), by = "day"))
df1
#> Source: local data frame [22 x 4]
#> Groups: ID [3]
#>
#> # A tibble: 22 x 4
#> ID date drug score
#> <fctr> <date> <dbl> <dbl>
#> 1 A 2016-08-28 2 3
#> 2 A 2016-08-29 1 4
#> 3 A 2016-08-30 2 4
#> 4 A 2016-08-31 NA NA
#> 5 A 2016-09-01 NA NA
#> 6 A 2016-09-02 2 4
#> 7 A 2016-09-03 1 4
#> 8 A 2016-09-04 2 4
#> 9 B 2016-08-08 1 3
#> 10 B 2016-08-09 2 4
#> # ... with 12 more rows
df2 <- df1 %>%
group_by(ID) %>%
mutate(day_of = drug == 1,
day_before = (lead(drug) == 1 & day_of == FALSE),
day_after = (lag(drug) == 1 & day_of == FALSE))
df2
#> Source: local data frame [22 x 7]
#> Groups: ID [3]
#>
#> # A tibble: 22 x 7
#> ID date drug score day_of day_before day_after
#> <fctr> <date> <dbl> <dbl> <lgl> <lgl> <lgl>
#> 1 A 2016-08-28 2 3 FALSE TRUE NA
#> 2 A 2016-08-29 1 4 TRUE FALSE FALSE
#> 3 A 2016-08-30 2 4 FALSE NA TRUE
#> 4 A 2016-08-31 NA NA NA NA FALSE
#> 5 A 2016-09-01 NA NA NA FALSE NA
#> 6 A 2016-09-02 2 4 FALSE TRUE NA
#> 7 A 2016-09-03 1 4 TRUE FALSE FALSE
#> 8 A 2016-09-04 2 4 FALSE NA TRUE
#> 9 B 2016-08-08 1 3 TRUE FALSE FALSE
#> 10 B 2016-08-09 2 4 FALSE FALSE TRUE
#> # ... with 12 more rows
dplyr::mutate_at
applies a function (in funs()
) to all the columns selected in vars()
. summarise_at
operates the same way in terms of operating on a some selected columns, but instead of changing the values of the full dataset it reduces it done to one row per group. Can can read more about mmutate
, summarise
, and the special *_at
versions.
df3 <- df2 %>%
mutate_at(vars(starts_with("day_")), funs(if_else(. == TRUE, score, NA_real_))) %>%
summarise_at(vars(starts_with("day_")), mean, na.rm = TRUE)
df3
#> # A tibble: 3 x 4
#> ID day_of day_before day_after
#> <fctr> <dbl> <dbl> <dbl>
#> 1 A 4.00 3.5 4.0
#> 2 B 3.00 3.0 4.0
#> 3 C 3.25 NaN 2.5
Here is a possibility using dplyr
and its lead
and lag
functions:
library(tidyverse)
data %>% group_by(ID) %>%
arrange(date) %>%
mutate(
# use ifelse for cases of drugs being take twice or more in a row
`-1 day` = ifelse(dplyr::lag(drug) != 1, dplyr::lag(score, 1), NA),
`+1 day` = ifelse(dplyr::lead(drug) != 1, dplyr::lead(score, 1), NA)
) %>%
filter(drug == 1) %>%
summarise_all(mean, na.rm = TRUE) %>%
select(
`-1 day`,
`0 day` = score,
`+1 day`,
-date,
-drug
)
# A tibble: 3 × 3
`-1 day` `0 day` `+1 day`
<dbl> <dbl> <dbl>
1 3.5 4.00 4.0
2 3.0 3.00 4.0
3 3.0 3.25 2.5
I prefer to use time series packages (like zoo
) for such tasks.
library(zoo)
#function that handles conversion to zoo time series
my_zoo=function(x,idx) {
date_range=seq(min(idx),max(idx),by="day")
#add missing dates
dummy_zoo=merge(zoo(x,idx),zoo(NA,date_range),all=TRUE)[,1]
#add NA entry at top/bottom
rbind(dummy_zoo,rbind(zoo(NA,max(idx)+1),zoo(NA,min(idx)-1)))
}
#split by ID, handle cases where drug is NA
split_data=lapply(split(data,df$ID),function(x) {
list(score=my_zoo(x$score,x$date),
taken=(my_zoo(x$drug,x$date)==1)&
!is.na(my_zoo(x$drug,x$date)))})
#calculate stats
#your requirement that subsequent days with drug taken...
#... are completely omitted is a bit tricky to handle
res=data.frame(
mean_m1=sapply(split_data,function(x) {
mean(x$score[diff(x$taken,-1)>0&
lag(diff(x$taken),+1)],
na.rm=TRUE)}),
mean_0=sapply(split_data,function(x) {
mean(x$score[x$taken],
na.rm=TRUE)}),
mean_p1=sapply(split_data,function(x) {
mean(x$score[diff(x$taken,+1)<0&
lag(diff(x$taken),-1)],
na.rm=TRUE)}))
res
# mean_m1 mean_0 mean_p1
# A 3.5 4.00 4.0
# B 3.0 3.00 4.0
# C NaN 3.25 2.5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With