I'm trying to reproduce the following R results in Python. In this particular case the R predictive skill is lower than the Python skill, but this is usually not the case in my experience (hence the reason for wanting to reproduce the results in Python), so please ignore that detail here.
The aim is to predict the flower species ('versicolor' 0 or 'virginica' 1). We have 100 labelled samples, each consisting of 4 flower characteristics: sepal length, sepal width, petal length, petal width. I've split the data into training (60% of data) and test sets (40% of data). 10-fold cross-validation is applied to the training set to search for the optimal lambda (the parameter that is optimized is "C" in scikit-learn).
I'm using glmnet in R with alpha set to 1 (for the LASSO penalty), and for python, scikit-learn's LogisticRegressionCV function with the "liblinear" solver (the only solver that can be used with L1 penalisation). The scoring metrics used in the cross-validation are the same between both languages. However somehow the model results are different (the intercepts and coefficients found for each feature vary quite a bit).
R Code
library(glmnet)
library(datasets)
data(iris)
y <- as.numeric(iris[,5])
X <- iris[y!=1, 1:4]
y <- y[y!=1]-2
n_sample = NROW(X)
w = .6
X_train = X[0:(w * n_sample),] # (60, 4)
y_train = y[0:(w * n_sample)] # (60,)
X_test = X[((w * n_sample)+1):n_sample,] # (40, 4)
y_test = y[((w * n_sample)+1):n_sample] # (40,)
# set alpha=1 for LASSO and alpha=0 for ridge regression
# use class for logistic regression
set.seed(0)
model_lambda <- cv.glmnet(as.matrix(X_train), as.factor(y_train),
nfolds = 10, alpha=1, family="binomial", type.measure="class")
best_s <- model_lambda$lambda.1se
pred <- as.numeric(predict(model_lambda, newx=as.matrix(X_test), type="class" , s=best_s))
# best lambda
print(best_s)
# 0.04136537
# fraction correct
print(sum(y_test==pred)/NROW(pred))
# 0.75
# model coefficients
print(coef(model_lambda, s=best_s))
#(Intercept) -14.680479
#Sepal.Length 0
#Sepal.Width 0
#Petal.Length 1.181747
#Petal.Width 4.592025
Python Code
from sklearn import datasets
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
import numpy as np
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 0] # four features. Disregard one of the 3 species.
y = y[y != 0]-1 # two species: 'versicolor' (0), 'virginica' (1). Disregard one of the 3 species.
n_sample = len(X)
w = .6
X_train = X[:int(w * n_sample)] # (60, 4)
y_train = y[:int(w * n_sample)] # (60,)
X_test = X[int(w * n_sample):] # (40, 4)
y_test = y[int(w * n_sample):] # (40,)
X_train_fit = StandardScaler().fit(X_train)
X_train_transformed = X_train_fit.transform(X_train)
clf = LogisticRegressionCV(n_jobs=2, penalty='l1', solver='liblinear', cv=10, scoring = ‘accuracy’, random_state=0)
clf.fit(X_train_transformed, y_train)
print clf.score(X_train_fit.transform(X_test), y_test) # score is 0.775
print clf.intercept_ #-1.83569557
print clf.coef_ # [ 0, 0, 0.65930981, 1.17808155] (sepal length, sepal width, petal length, petal width)
print clf.C_ # optimal lambda: 0.35938137
We can use LASSO to improve overfitting in models by selecting features. It works with Linear Regression, Logistic Regression and several other models. Essentially, if the model has coefficients, LASSO can be used.
In Python, Lasso regression can be performed using the Lasso class from the sklearn. linear_model library. The Lasso class takes in a parameter called alpha which represents the strength of the regularization term. A higher alpha value results in a stronger penalty, and therefore fewer features being used in the model.
In contrast, the logistic LASSO regression shrinks such coefficients successively to avoid inflation of the estimated coefficients, which results in superior predictive performance.
Logistic regression turns the linear regression framework into a classifier and various types of 'regularization', of which the Ridge and Lasso methods are most common, help avoid overfit in feature rich instances.
There are a few things that are different in the examples above:
Scale of the coefficients
LogisticRegressionCV by default uses stratifiedfolds. glmnet uses k-fold.
They are fitting different equations. Notice that scikit-learn logistic fits (http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression) with the regularization on the logistic side. glmnet puts the regularization on the penalty.
Choosing the regularization strengths to try - glmnet defaults to 100 lambdas to try. scikit LogisticRegressionCV defaults to 10. Due to the equation scikit solves, the range is between 1e-4 and 1e4 (http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV).
Tolerance is different. In some problems I have had, tightening the tolerance significantly changed the coefs.
You may want to try printing the regularization paths to see if they are very similar, just stopping on a different strength. Then you can research why.
Even after changing what you can change which is not all of the above, you may not get the same coefs or results. Though you are solving the same problem in different software, how the software solves the problem may be different. We see different scales, different equations, different defaults, different solvers, etc.
The problem that you've got here is the ordering of the datasets (note I haven't checked the R code, but I'm certain this is the problem). If I run your code and then run this
print np.bincount(y_train) # [50 10]
print np.bincount(y_test) # [ 0 40]
You can see the training set is not representative of the test set. However if I make a couple of changes to your Python code then I get a test accuracy of 0.9
.
from sklearn import datasets
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
import numpy as np
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 0] # four features. Disregard one of the 3 species.
y = y[y != 0]-1 # two species: 'versicolor' (0), 'virginica' (1). Disregard one of the 3 species.
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y,
test_size=0.4,
random_state=42,
stratify=y)
X_train_fit = StandardScaler().fit(X_train)
X_train_transformed = X_train_fit.transform(X_train)
clf = LogisticRegressionCV(n_jobs=2, penalty='l1', solver='liblinear', cv=10, scoring = 'accuracy', random_state=0)
clf.fit(X_train_transformed, y_train)
print clf.score(X_train_fit.transform(X_test), y_test) # score is 0.9
print clf.intercept_ #0.
print clf.coef_ # [ 0., 0. ,0., 0.30066888] (sepal length, sepal width, petal length, petal width)
print clf.C_ # [ 0.04641589]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With