I'm new to R and currently trying to subset my data according to my predefined exclusion criteria for analysis. I'm presently trying to remove all cases that have dementia, as coded by the ICD-10. Problem is that there are multiple variables containing information on each individual's disease status (~70 variables), although as they are coded in the same way, the same condition can be applied to all of them.
Some simulated data:
#Create dataframe containing simulated data
df = data.frame(ID = c(1001, 1002, 1003, 1004, 1005,1006,1007,1008,1009,1010,1011),
disease_code_1 = c('I802','H356','G560','D235','B178','F011','F023','C761','H653','A049','J679'),
disease_code_2 = c('A071','NA','G20','NA','NA','A049','NA','NA','G300','G308','A045'),
disease_code_3 = c('H250','NA','NA','I802','NA','A481','NA','NA','NA','NA','D352'))
#data is structured as below:
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
3 1003 G560 G20 NA
4 1004 D235 NA I802
5 1005 B178 NA NA
6 1006 F011 A049 A481
7 1007 F023 NA NA
8 1008 C761 NA NA
9 1009 H653 G300 NA
10 1010 A049 G308 NA
11 1011 J679 A045 D352
Here, I'm trying to remove any case that has a 'dementia code' across any of the "disease_code" variables.
#Remove cases with dementia from dataframe (e.g. F023, G20)
Newdata_df <- subset(df, (2:4 != "F023"|"G20"|"F009"|"F002"|"F001"|"F000"|"F00"|
"G309"| "G308"|"G301"|"G300"|"G30"| "F01"|"F018"|"F013"|
"F012"| "F011"| "F010"|"F01"))
The error that I recieve is:
Error in 2:4 != "F023" | "G20" :
operations are possible only for numeric, logical or complex types
Ideally, the subsetted dataframe would look like this:
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
4 1004 D235 NA I802
5 1005 B178 NA NA
8 1008 C761 NA NA
11 1011 J679 A045 D352
I know that there is an error in my code although I'm not sure how exactly to fix it. I've tried a few other ways (using dplyr) although haven't had any luck so far.
Any help is greatly appreciated!
How to subset the data frame (DataFrame) by column value and name in R? By using R base df[] notation, or subset() you can easily subset the R Data Frame (data. frame) by column value or by column name.
Subset a Data Frame with Base R Extract[] To specify a logical expression for the rows parameter, use the standard R operators. If subsetting is done by only rows or only columns, then leave the other value blank. For example, to subset the d data frame only by rows, the general form reduces to d[rows,] .
Subset a Dataframe using Python iloc() This line of code selects row number 2, 3 and 6 along with column number 3 and 5. Using iloc saves you from writing the complete labels of rows and columns. You can also use iloc() to select rows or columns individually just like loc() after replacing the labels with integers.
We can create a vector with the codes to be removed and use rowSums
to remove, i.e.
codes_to_remove <- c("F023", "G20", "F009", "F002", "F001", "F000", "F00", "G309", "G308",
"G301", "G300", "G30", "F01", "F018", "F013", "F012", "F011", "F010", "F01")
df[rowSums(sapply(df[-1], `%in%`, codes_to_remove)) == 0,]
which gives,
ID disease_code_1 disease_code_2 disease_code_3 1 1001 I802 A071 H250 2 1002 H356 NA NA 4 1004 D235 NA I802 5 1005 B178 NA NA 8 1008 C761 NA NA 11 1011 J679 A045 D352
One dplyr
possibility could be:
df %>%
filter_at(vars(2:4), all_vars(! . %in% c("F023","G20","F009","F002","F001","F000","F00",
"G309", "G308","G301","G300","G30", "F01","F018","F013",
"F012", "F011", "F010","F01")))
ID disease_code_1 disease_code_2 disease_code_3
1 1001 I802 A071 H250
2 1002 H356 NA NA
3 1004 D235 NA I802
4 1005 B178 NA NA
5 1008 C761 NA NA
6 1011 J679 A045 D352
In this case, it checks whether any of the columns 2:4 contains any of the given codes.
Or:
df %>%
filter_at(vars(contains("disease_code")), all_vars(! . %in% c("F023","G20","F009","F002","F001","F000","F00",
"G309", "G308","G301","G300","G30", "F01","F018","F013",
"F012", "F011", "F010","F01")))
In this case, it checks whether any of the columns with names disease_code
contains any of the given codes.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With