Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Find column number that satisfies condition

Tags:

r

I have two columns where the sum of each row is 1 (they are the probability of one of two classes). I need to find the column number where a condition is met.

C1   C2
0.4 0.6
0.3 0.7
1    0
0.7 0.3
0.1 0.9

For example, if I need to find the column where the number is >= 0.6, in the table above it should result in:

2
2
1
1
2
like image 697
user3639100 Avatar asked Feb 14 '18 21:02

user3639100


4 Answers

Thanks for this interesting question. Here is an idea using apply.

apply(dat, 1, function(x) which(x >= 0.6))
# [1] 2 2 1 1 2

DATA

dat <- read.table(textConnection("C1   C2
0.4 0.6
0.3 0.7
1    0
0.7 0.3
0.1 0.9"), header = T)

Benchmarking

I conducted the benchmark for the original data frame dat, and a data frame with 5000 rows dat2. The results are as follows. I feel a little bit embarrassed that my apply method is the slowest.

If anyone has any idea how to improve the way I conducted benchmark, please let me know.

library(microbenchmark)

# Benchmark 1
perf <- microbenchmark(m1 = {apply(dat, 1, function(x) which(x >= 0.6))},
                       m2 = {ifelse(dat$C1 <= 0.4, 2, 1)},
                       m3 = {(dat$C2 >= 0.6) + 1},
                       m4 = {(which(t(dat) >= 0.6) + 1) %% ncol(dat) + 1},
                       m5 = {((dat>=0.6) %*% c(1,2))[, 1]},
                       m6 = {m <- which(dat >= 0.6, arr.ind = TRUE)
                             m[order(m[, 1]), ][, 2]},
                       m7 = {max.col(dat >= 0.6)})

perf
# Unit: microseconds
# expr    min      lq     mean  median      uq      max neval
# m1 58.602 65.0280 88.34563 67.5985 70.6825 1746.246   100
# m2  9.253 12.8515 15.45772 13.8790 14.9080   49.349   100
# m3  4.112  5.6540  6.59015  6.1690  7.1970   23.132   100
# m4 30.844 35.7270 40.29682 38.0405 40.8670  134.683   100
# m5 23.647 26.7310 30.13404 27.7590 29.8160   77.109   100
# m6 49.863 53.4620 61.31148 56.5460 59.8875  168.610   100
# m7 37.012 40.0960 45.36537 42.1530 45.2370   97.671   100


# Benchmark 2   
dat2 <- dat[rep(1:5, 1000), ]

perf2 <- microbenchmark(m1 = {apply(dat2, 1, function(x) which(x >= 0.6))},
                        m2 = {ifelse(dat2$C1 <= 0.4, 2, 1)},
                        m3 = {(dat2$C2 >= 0.6) + 1},
                        m4 = {(which(t(dat2) >= 0.6) + 1) %% ncol(dat2) + 1},
                        m5 = {((dat2 >= 0.6) %*% c(1,2))[, 1]},
                        m6 = {m <- which(dat2 >= 0.6, arr.ind = TRUE)
                              m[order(m[, 1]), ][, 2]},
                        m7 = {max.col(dat2 >= 0.6)})

perf2
# Unit: microseconds
# expr       min         lq        mean     median         uq        max neval
# m1 13842.995 14830.2380 17173.18941 15716.2125 16551.8095 165431.735   100
# m2   133.140   146.7630   168.86722   160.6420   179.9195    314.602   100
# m3    22.104    25.7030    31.93827    28.0160    33.9280     67.341   100
# m4   156.787   179.6620   212.97310   210.5055   234.6665    320.257   100
# m5   131.598   148.8195   173.42179   164.2410   189.9440    286.843   100
# m6   403.019   439.2600   496.25370   472.6735   549.0110    791.646   100
# m7   140.337   156.7870   270.48048   179.4055   208.9635   8631.503   100
like image 77
www Avatar answered Oct 20 '22 15:10

www


You can make use of the fact that TRUE = 1 and FALSE = 0:

> df <- read.table(textConnection("C1   C2
+                  0.4 0.6
+                  0.3 0.7
+                  1    0
+                  0.7 0.3
+                  0.1 0.9"), header = T)
> (df$C2 >= 0.6) + 1
[1] 2 2 1 1 2
like image 23
C. Braun Avatar answered Oct 20 '22 15:10

C. Braun


This is using matrix multiple

(dt>=0.6)%*%c(1,2)
     [,1]
[1,]    2
[2,]    2
[3,]    1
[4,]    1
[5,]    2
like image 3
BENY Avatar answered Oct 20 '22 15:10

BENY


If I consider the case where more than 1 column can satisfy the condition then which will be a better option.

I have modified the data so that both column 1 and 2 satisfy the condition in row 3.

# Data
df <- read.table(text = "C1   C2
0.4 0.6
0.3 0.7
1    1
0.7 0.3
0.1 0.9", header = T, stringsAsFactors = F)

# Use of which with arr.ind = TRUE
which(df >= 0.6, arr.ind = TRUE)

# Result shows row number 3 twice
#     row col
#[1,]   3   1
#[2,]   4   1
#[3,]   1   2
#[4,]   2   2
#[5,]   3   2
#[6,]   5   2
like image 3
MKR Avatar answered Oct 20 '22 16:10

MKR