I'm an Isabelle newbie, and I'm a little (actually, a lot) confused about the relationship between ⋀ and ∀, and between ⟹ and ⟶.
I have the following goal (which is a highly simplified version of something that I've ended up with in a real proof):
⟦⋀x. P x ⟹ P z; P y⟧ ⟹ P z
which I want to prove by specialising x with y to get ⟦P y ⟹ P z; P y⟧ ⟹ P z, and then using modus ponens. This works for proving the very similar-looking:
⟦∀x. P x ⟶ P z; P y⟧ ⟹ P z
but I can't get it to work for the goal above.
Is there a way of converting the former goal into the latter? If not, is this because they are logically different statements, in which case can someone help me understand the difference?
That the two premises !!x. P x ==> P y
and ALL x. P x --> P y
are logically equivalent can be shown by the following proof
lemma
"(⋀x. P x ⟹ P y) ≡ (Trueprop (∀x. P x ⟶ P y))"
by (simp add: atomize_imp atomize_all)
When I tried the same kind of reasoning for your example proof I ran into a problem however. I intended to do the following proof
lemma
"⟦⋀x. P x ⟹ P z; P y⟧ ⟹ P z"
apply (subst (asm) atomize_imp)
apply (unfold atomize_all)
apply (drule spec [of _ y])
apply (erule rev_mp)
apply assumption
done
but at unfold atomize_all
I get
Failed to apply proof method:
When trying to explicitly instantiate the lemma I get a more clear error message, i.e.,
apply (unfold atomize_all [of "λx. P x ⟶ P z"])
yields
Type unification failed: Variable 'a::{} not of sort type
This I find strange, since as far as I know every type variable should be of sort type
. We can solve this issue by adding an explicit sort constraint:
lemma
"⟦⋀x::_::type. P x ⟹ P z; P y⟧ ⟹ P z"
Then the proof works as shown above.
Cutting a long story short. I usually work with Isar
structured proofs instead of apply
scripts. Then such issues are often avoided. For your statement I would actually do
lemma
"⟦⋀x. P x ⟹ P z; P y⟧ ⟹ P z"
proof -
assume *: "⋀x. P x ⟹ P z"
and **: "P y"
from * [OF **] show ?thesis .
qed
Or maybe more idiomatic
lemma
assumes *: "⋀x. P x ⟹ P z"
and **: "P y"
shows "P z"
using * [OF **] .
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With