I am having few empty rows in an RDD which I want to remove. How can I do it?
I tried the below but it is not working. I am still getting the empty rows
json_cp_rdd = xform_rdd.map(lambda (key, value): get_cp_json_with_planid(key, value)).filter(
lambda x: x is not None).filter(
lambda x: x is not '')
[u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'', u'[{ "PLAN_ID": "d2031aed-175f-4346-af31-9d05bfd4ea3a", "CostTotalInvEOPAmount": 0.0, "StoreCount": 0, "WeekEndingData": "2017-07-08", "UnitTotalInvBOPQuantity": 0.0, "PriceStatus": 1, "UnitOnOrderQuantity": null, "CostTotalInvBOPAmount": 0.0, "RetailSalesAmount": 0.0, "UnitCostAmount": 0.0, "CostReceiptAmount": 0.0, "CostSalesAmount": 0.0, "UnitSalesQuantity": 0.0, "UnitReceiptQuantity": 0.0, "UnitTotalInvEOPQuantity": 0.0, "CostOnOrderAmount": null}]', u'', u'', u'', u'', u'', u'', u'', u'', u'']
is
checks object identity not equality. In Python 2.x you could use !=
.filter(lambda x: x is not None).filter(lambda x: x != "")
but idiomatically you can use only a single filter
with identity:
.filter(lambda x: x)
or directly with bool
:
.filter(bool)
replaced filter(lambda x: x is not '')
with filter(lambda x: x is not u'')
and it worked out
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With