I'm having a hard time loading multiple line delimited JSON files into a single pandas dataframe. This is the code I'm using:
import os, json
import pandas as pd
import numpy as np
import glob
pd.set_option('display.max_columns', None)
temp = pd.DataFrame()
path_to_json = '/Users/XXX/Desktop/Facebook Data/*'
json_pattern = os.path.join(path_to_json,'*.json')
file_list = glob.glob(json_pattern)
for file in file_list:
data = pd.read_json(file, lines=True)
temp.append(data, ignore_index = True)
It looks like all the files are loading when I look through file_list
, but cannot figure out how to get each file into a dataframe. There are about 50 files with a couple lines in each file.
Step 1: Load the nested json file with the help of json. load() method. Step 2: Flatten the different column values using pandas methods. Step 3: Convert the flattened dataframe into CSV file.
pandas filesystem APIs make it easy to load multiple files stored in a single directory or in nested directories. Other Python libraries can even make this easier and more scalable.
Reading JSON Files using Pandas To read the files, we use read_json() function and through it, we pass the path to the JSON file we want to read. Once we do that, it returns a “DataFrame”( A table of rows and columns) that stores data.
Change the last line to:
temp = temp.append(data, ignore_index = True)
The reason we have to do this is because the append doesn't happen in place. The append method does not modify the data frame. It just returns a new data frame with the result of the append operation.
Since writing this answer I have learned that you should never use DataFrame.append
inside a loop because it leads to quadratic copying (see this answer).
What you should do instead is first create a list of data frames and then use pd.concat
to concatenate them all in a single operation. Like this:
dfs = [] # an empty list to store the data frames
for file in file_list:
data = pd.read_json(file, lines=True) # read data frame from json file
dfs.append(data) # append the data frame to the list
temp = pd.concat(dfs, ignore_index=True) # concatenate all the data frames in the list.
This alternative should be considerably faster.
If you need to flatten the JSON, Juan Estevez’s approach won’t work as is. Here is an alternative :
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
json_data = pd.json_normalize(json.loads(f.read()))
dfs.append(json_data)
df = pd.concat(dfs, sort=False) # or sort=True depending on your needs
Or if your JSON are line-delimited (not tested) :
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
for line in f.readlines():
json_data = pd.json_normalize(json.loads(line))
dfs.append(json_data)
df = pd.concat(dfs, sort=False) # or sort=True depending on your needs
I combined Juan Estevez's answer with glob. Thanks a lot.
import pandas as pd
import glob
def readFiles(path):
files = glob.glob(path)
dfs = [] # an empty list to store the data frames
for file in files:
data = pd.read_json(file, lines=True) # read data frame from json file
dfs.append(data) # append the data frame to the list
df = pd.concat(dfs, ignore_index=True) # concatenate all the data frames in the list.
return df
from pathlib import Path
import pandas as pd
paths = Path("/home/data").glob("*.json")
df = pd.DataFrame([pd.read_json(p, typ="series") for p in paths])```
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With