How to quickly determine if a square logical matrix is a permutation matrix? For instance,
is not a permutation matrix since the 3rd row have 2 entries 1.
PS: A permutation matrix is a square binary matrix that has exactly one entry 1 in each row and each column and 0s elsewhere.
I define a logical matrix like
numpy.array([(0,1,0,0), (0,0,1,0), (0,1,1,0), (1,0,0,1)])
Here is my source code:
#!/usr/bin/env python
import numpy as np
### two test cases
M1 = np.array([
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 1, 1, 0),
(1, 0, 0, 1)]);
M2 = np.array([
(0, 1, 0, 0),
(0, 0, 1, 0),
(1, 0, 0, 0),
(0, 0, 0, 1)]);
### fuction
def is_perm_matrix(M) :
for sumRow in np.sum(M, axis=1) :
if sumRow != 1 :
return False
for sumCol in np.sum(M, axis=0) :
if sumCol != 1 :
return False
return True
### print the result
print is_perm_matrix(M1) #False
print is_perm_matrix(M2) #True
Is there any better implementation?
Examples of permutation matrices are the identity matrix , the reverse identity matrix , and the shift matrix (also called the cyclic permutation matrix), illustrated for by. Pre- or postmultiplying a matrix by reverses the order of the rows and columns, respectively.
An identity matrix is an example of a permutation matrix.
Here's a simple non-numpy solution that assumes that the matrix is a list of lists and that it only contains integers 0 or 1. It also functions correctly if the matrix contains Booleans.
def is_perm_matrix(m):
#Check rows
if all(sum(row) == 1 for row in m):
#Check columns
return all(sum(col) == 1 for col in zip(*m))
return False
m1 = [
[0, 1, 0],
[1, 0, 0],
[0, 0, 1],
]
m2 = [
[0, 1, 0],
[1, 0, 0],
[0, 1, 1],
]
m3 = [
[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
]
m4 = [
[True, False, False],
[False, True, False],
[True, False, False],
]
print is_perm_matrix(m1)
print is_perm_matrix(m2)
print is_perm_matrix(m3)
print is_perm_matrix(m4)
output
True
False
False
False
What about this:
def is_permuation_matrix(x):
x = np.asanyarray(x)
return (x.ndim == 2 and x.shape[0] == x.shape[1] and
(x.sum(axis=0) == 1).all() and
(x.sum(axis=1) == 1).all() and
((x == 1) | (x == 0)).all())
Quick test:
In [37]: is_permuation_matrix(np.eye(3))
Out[37]: True
In [38]: is_permuation_matrix([[0,1],[2,0]])
Out[38]: False
In [39]: is_permuation_matrix([[0,1],[1,0]])
Out[39]: True
In [41]: is_permuation_matrix([[0,1,0],[0,0,1],[1,0,0]])
Out[41]: True
In [42]: is_permuation_matrix([[0,1,0],[0,0,1],[1,0,1]])
Out[42]: False
In [43]: is_permuation_matrix([[0,1,0],[0,0,1]])
Out[43]: False
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With