Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to prefetch data using a custom python function in tensorflow

I am trying to prefetch training data to hide I/O latency. I would like to write custom Python code that loads data from disk and preprocesses the data (e.g. by adding a context window). In other words, one thread does data preprocessing and the other does training. Is this possible in TensorFlow?

Update: I have a working example based on @mrry's example.

import numpy as np
import tensorflow as tf
import threading

BATCH_SIZE = 5
TRAINING_ITERS = 4100

feature_input = tf.placeholder(tf.float32, shape=[128])
label_input = tf.placeholder(tf.float32, shape=[128])

q = tf.FIFOQueue(200, [tf.float32, tf.float32], shapes=[[128], [128]])
enqueue_op = q.enqueue([label_input, feature_input])

label_batch, feature_batch = q.dequeue_many(BATCH_SIZE)
c = tf.reshape(feature_batch, [BATCH_SIZE, 128]) + tf.reshape(label_batch, [BATCH_SIZE, 128])

sess = tf.Session()

def load_and_enqueue(sess, enqueue_op, coord):
  with open('dummy_data/features.bin') as feature_file, open('dummy_data/labels.bin') as label_file:
    while not coord.should_stop():
      feature_array = np.fromfile(feature_file, np.float32, 128)
      if feature_array.shape[0] == 0:
        print('reach end of file, reset using seek(0,0)')
        feature_file.seek(0,0)
        label_file.seek(0,0)
        continue
      label_value = np.fromfile(label_file, np.float32, 128)

      sess.run(enqueue_op, feed_dict={feature_input: feature_array,
                                      label_input: label_value})

coord = tf.train.Coordinator()
t = threading.Thread(target=load_and_enqueue, args=(sess,enqueue_op, coord))
t.start()

for i in range(TRAINING_ITERS):
  sum = sess.run(c)
  print('train_iter='+str(i))
  print(sum)

coord.request_stop()
coord.join([t])
like image 404
read Read Avatar asked Jan 04 '16 15:01

read Read


2 Answers

This is a common use case, and most implementations use TensorFlow's queues to decouple the preprocessing code from the training code. There is a tutorial on how to use queues, but the main steps are as follows:

  1. Define a queue, q, that will buffer the preprocessed data. TensorFlow supports the simple tf.FIFOQueue that produces elements in the order they were enqueued, and the more advanced tf.RandomShuffleQueue that produces elements in a random order. A queue element is a tuple of one or more tensors (which can have different types and shapes). All queues support single-element (enqueue, dequeue) and batch (enqueue_many, dequeue_many) operations, but to use the batch operations you must specify the shapes of each tensor in a queue element when constructing the queue.

  2. Build a subgraph that enqueues preprocessed elements into the queue. One way to do this would be to define some tf.placeholder() ops for tensors corresponding to a single input example, then pass them to q.enqueue(). (If your preprocessing produces a batch at once, you should use q.enqueue_many() instead.) You might also include TensorFlow ops in this subgraph.

  3. Build a subgraph that performs training. This will look like a regular TensorFlow graph, but will get its input by calling q.dequeue_many(BATCH_SIZE).

  4. Start your session.

  5. Create one or more threads that execute your preprocessing logic, then execute the enqueue op, feeding in the preprocessed data. You may find the tf.train.Coordinator and tf.train.QueueRunner utility classes useful for this.

  6. Run your training graph (optimizer, etc.) as normal.

EDIT: Here's a simple load_and_enqueue() function and code fragment to get you started:

# Features are length-100 vectors of floats
feature_input = tf.placeholder(tf.float32, shape=[100])
# Labels are scalar integers.
label_input = tf.placeholder(tf.int32, shape=[])

# Alternatively, could do:
# feature_batch_input = tf.placeholder(tf.float32, shape=[None, 100])
# label_batch_input = tf.placeholder(tf.int32, shape=[None])

q = tf.FIFOQueue(100, [tf.float32, tf.int32], shapes=[[100], []])
enqueue_op = q.enqueue([feature_input, label_input])

# For batch input, do:
# enqueue_op = q.enqueue_many([feature_batch_input, label_batch_input])

feature_batch, label_batch = q.dequeue_many(BATCH_SIZE)
# Build rest of model taking label_batch, feature_batch as input.
# [...]
train_op = ...

sess = tf.Session()

def load_and_enqueue():
  with open(...) as feature_file, open(...) as label_file:
    while True:
      feature_array = numpy.fromfile(feature_file, numpy.float32, 100)
      if not feature_array:
        return
      label_value = numpy.fromfile(feature_file, numpy.int32, 1)[0]

      sess.run(enqueue_op, feed_dict={feature_input: feature_array,
                                      label_input: label_value})

# Start a thread to enqueue data asynchronously, and hide I/O latency.
t = threading.Thread(target=load_and_enqueue)
t.start()

for _ in range(TRAINING_EPOCHS):
  sess.run(train_op)
like image 99
mrry Avatar answered Oct 20 '22 07:10

mrry


In other words, one thread does data preprocessing and the other does training. Is this possible in TensorFlow?

Yes, it is. mrry's solution works, but simpler exists.

Fetching data

tf.py_func wraps a python function and uses it as a TensorFlow operator. So we can load the data at sess.run() each time. The problem with this approach is that data is loaded during sess.run() via the main thread.

A minimal example:

def get_numpy_tensor():
  return np.array([[1,2],[3,4]], dtype=np.float32)
tensorflow_tensor = tf.py_func(get_numpy_tensor, [], tf.float32)

A more complex example:

def get_numpy_tensors():
  # Load data from the disk into numpy arrays.
  input = np.array([[1,2],[3,4]], dtype=np.float32)
  target = np.int32(1)
  return input, target
tensorflow_input, tensorflow_target = tf.py_func(get_numpy_tensors, [], [tf.float32, tf.int32])

tensorflow_input, tensorflow_target = 2*tensorflow_input, 2*tensorflow_target

sess = tf.InteractiveSession()
numpy_input, numpy_target = sess.run([tensorflow_input, tensorflow_target])
assert np.all(numpy_input==np.array([[2,4],[6,8]])) and numpy_target==2

Prefetching data in another thread

To queue our data in another thread (so that sess.run() won't have to wait for the data), we can use tf.train.batch() on our operators from tf.py_func().

A minimal example:

tensor_shape = get_numpy_tensor().shape
tensorflow_tensors = tf.train.batch([tensorflow_tensor], batch_size=32, shapes=[tensor_shape])
# Run `tf.train.start_queue_runners()` once session is created.

We can omit the argument shapes if tensorflow_tensor has its shape specified:

tensor_shape = get_numpy_tensor().shape
tensorflow_tensor.set_shape(tensor_shape)
tensorflow_tensors = tf.train.batch([tensorflow_tensor], batch_size=32)
# Run `tf.train.start_queue_runners()` once session is created.

A more complex example:

input_shape, target_shape = (2, 2), ()
def get_numpy_tensors():
  input = np.random.rand(*input_shape).astype(np.float32)
  target = np.random.randint(10, dtype=np.int32)
  print('f', end='')
  return input, target
tensorflow_input, tensorflow_target = tf.py_func(get_numpy_tensors, [], [tf.float32, tf.int32])
batch_size = 2
tensorflow_inputs, tensorflow_targets = tf.train.batch([tensorflow_input, tensorflow_target], batch_size, shapes=[input_shape, target_shape], capacity=2)
# Internal queue will contain at most `capasity=2` times `batch_size=2` elements `[tensorflow_input, tensorflow_target]`.

tensorflow_inputs, tensorflow_targets = 2*tensorflow_inputs, 2*tensorflow_targets

sess = tf.InteractiveSession()
tf.train.start_queue_runners() # Internally, `tf.train.batch` uses a QueueRunner, so we need to ask tf to start it.
for _ in range(10):
  numpy_inputs, numpy_targets = sess.run([tensorflow_inputs, tensorflow_targets])
  assert numpy_inputs.shape==(batch_size, *input_shape) and numpy_targets.shape==(batch_size, *target_shape)
  print('r', end='')

# Prints `fffffrrffrfrffrffrffrffrffrffrf`.

In case get_numpy_tensor() returns a batch of tensors, then tf.train.batch(..., enqueue_many=True) will help.

like image 39
AlexP Avatar answered Oct 20 '22 07:10

AlexP