Given a 2D(M x N) matrix, and a 2D Kernel(K x L), how do i return a matrix that is the result of max or mean pooling using the given kernel over the image?
I'd like to use numpy if possible.
Note: M, N, K, L can be both even or odd and they need not be perfectly divisible by each other, eg: 7x5 matrix and 2x2 kernel.
eg of max pooling:
matrix:
array([[ 20, 200, -5, 23],
[ -13, 134, 119, 100],
[ 120, 32, 49, 25],
[-120, 12, 09, 23]])
kernel: 2 x 2
soln:
array([[ 200, 119],
[ 120, 49]])
You could use scikit-image block_reduce:
import numpy as np
import skimage.measure
a = np.array([
[ 20, 200, -5, 23],
[ -13, 134, 119, 100],
[ 120, 32, 49, 25],
[-120, 12, 9, 23]
])
skimage.measure.block_reduce(a, (2,2), np.max)
Gives:
array([[200, 119],
[120, 49]])
If the image size is evenly divisible by the kernal size, you can reshape the array and use max
or mean
as you see fit
import numpy as np
mat = np.array([[ 20, 200, -5, 23],
[ -13, 134, 119, 100],
[ 120, 32, 49, 25],
[-120, 12, 9, 23]])
M, N = mat.shape
K = 2
L = 2
MK = M // K
NL = N // L
print(mat[:MK*K, :NL*L].reshape(MK, K, NL, L).max(axis=(1, 3)))
# [[200, 119], [120, 49]]
If you don't have an even number of kernels, you'll have to handle the boundaries separately. (As pointed out in the comments, this results in the matrix being copied, which will affect performance).
mat = np.array([[20, 200, -5, 23, 7],
[-13, 134, 119, 100, 8],
[120, 32, 49, 25, 12],
[-120, 12, 9, 23, 15],
[-57, 84, 19, 17, 82],
])
# soln
# [200, 119, 8]
# [120, 49, 15]
# [84, 19, 82]
M, N = mat.shape
K = 2
L = 2
MK = M // K
NL = N // L
# split the matrix into 'quadrants'
Q1 = mat[:MK * K, :NL * L].reshape(MK, K, NL, L).max(axis=(1, 3))
Q2 = mat[MK * K:, :NL * L].reshape(-1, NL, L).max(axis=2)
Q3 = mat[:MK * K, NL * L:].reshape(MK, K, -1).max(axis=1)
Q4 = mat[MK * K:, NL * L:].max()
# compose the individual quadrants into one new matrix
soln = np.vstack([np.c_[Q1, Q3], np.c_[Q2, Q4]])
print(soln)
# [[200 119 8]
# [120 49 15]
# [ 84 19 82]]
Instead of making "quadrants" as shown by Elliot's answer, we could pad it to make it evenly divisible, then perform either max or mean pooling.
As pooling is often used in CNN, the input array is usually 3D. So I made a function that works on either 2D or 3D arrays.
def pooling(mat,ksize,method='max',pad=False):
'''Non-overlapping pooling on 2D or 3D data.
<mat>: ndarray, input array to pool.
<ksize>: tuple of 2, kernel size in (ky, kx).
<method>: str, 'max for max-pooling,
'mean' for mean-pooling.
<pad>: bool, pad <mat> or not. If no pad, output has size
n//f, n being <mat> size, f being kernel size.
if pad, output has size ceil(n/f).
Return <result>: pooled matrix.
'''
m, n = mat.shape[:2]
ky,kx=ksize
_ceil=lambda x,y: int(numpy.ceil(x/float(y)))
if pad:
ny=_ceil(m,ky)
nx=_ceil(n,kx)
size=(ny*ky, nx*kx)+mat.shape[2:]
mat_pad=numpy.full(size,numpy.nan)
mat_pad[:m,:n,...]=mat
else:
ny=m//ky
nx=n//kx
mat_pad=mat[:ny*ky, :nx*kx, ...]
new_shape=(ny,ky,nx,kx)+mat.shape[2:]
if method=='max':
result=numpy.nanmax(mat_pad.reshape(new_shape),axis=(1,3))
else:
result=numpy.nanmean(mat_pad.reshape(new_shape),axis=(1,3))
return result
Sometimes you may want to perform overlapping pooling, at a stride not equal to the kernel size. Here is a function that does that, with or without padding:
def asStride(arr,sub_shape,stride):
'''Get a strided sub-matrices view of an ndarray.
See also skimage.util.shape.view_as_windows()
'''
s0,s1=arr.strides[:2]
m1,n1=arr.shape[:2]
m2,n2=sub_shape
view_shape=(1+(m1-m2)//stride[0],1+(n1-n2)//stride[1],m2,n2)+arr.shape[2:]
strides=(stride[0]*s0,stride[1]*s1,s0,s1)+arr.strides[2:]
subs=numpy.lib.stride_tricks.as_strided(arr,view_shape,strides=strides)
return subs
def poolingOverlap(mat,ksize,stride=None,method='max',pad=False):
'''Overlapping pooling on 2D or 3D data.
<mat>: ndarray, input array to pool.
<ksize>: tuple of 2, kernel size in (ky, kx).
<stride>: tuple of 2 or None, stride of pooling window.
If None, same as <ksize> (non-overlapping pooling).
<method>: str, 'max for max-pooling,
'mean' for mean-pooling.
<pad>: bool, pad <mat> or not. If no pad, output has size
(n-f)//s+1, n being <mat> size, f being kernel size, s stride.
if pad, output has size ceil(n/s).
Return <result>: pooled matrix.
'''
m, n = mat.shape[:2]
ky,kx=ksize
if stride is None:
stride=(ky,kx)
sy,sx=stride
_ceil=lambda x,y: int(numpy.ceil(x/float(y)))
if pad:
ny=_ceil(m,sy)
nx=_ceil(n,sx)
size=((ny-1)*sy+ky, (nx-1)*sx+kx) + mat.shape[2:]
mat_pad=numpy.full(size,numpy.nan)
mat_pad[:m,:n,...]=mat
else:
mat_pad=mat[:(m-ky)//sy*sy+ky, :(n-kx)//sx*sx+kx, ...]
view=asStride(mat_pad,ksize,stride)
if method=='max':
result=numpy.nanmax(view,axis=(2,3))
else:
result=numpy.nanmean(view,axis=(2,3))
return result
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With