I'm trying to implement Vector Udf in C# Spark.
I have created .Net Spark environment by following Spark .Net. Vector Udf (Apache arrow and Microsoft.Data.Analysis both) worked for me for IntegerType column. Now, trying to send the Integer array type column to Vector Udf and couldn't find the way to achieve this.
usings
using System;
using System.Linq;
using Microsoft.Data.Analysis;
using Microsoft.Spark.Sql;
using func = Microsoft.Spark.Sql.Functions;
using DataFrame = Microsoft.Spark.Sql.DataFrame;
using Arrow = Apache.Arrow;
program
SparkSession spark = SparkSession
.Builder()
.AppName("sample")
.GetOrCreate();
DataFrame dataFrame = spark.Range(0, 100).Repartition(4);
Func<Column, Column> array20 = func.Udf<int, int[]>(
(col1) => Enumerable.Range(0, col1).ToArray());
dataFrame = dataFrame.WithColumn("array", array20(dataFrame["id"]));
// Apache Arrow
var arrowVectorUdf = ArrowFunctions.VectorUdf<Arrow.UInt64Array, Arrow.Int64Array>((id) =>
{
var int32Array = new Arrow.Int64Array.Builder();
var count = id.Length;
foreach (var item in id.Data.Children)
{
int32Array.Append(item.Length + count);
}
return int32Array.Build();
});
// Microsoft.Data.Analysis
var dataFrameVector = DataFrameFunctions.VectorUdf<Int64DataFrameColumn, Int64DataFrameColumn>((id) => id + id.Length);
Working
dataFrame = dataFrame.WithColumn("arrowVectorUdfId", arrowVectorUdf(dataFrame["id"]));
dataFrame = dataFrame.WithColumn("dataFrameVectorId", dataFrameVector(dataFrame["id"]));
Not working
dataFrame = dataFrame.WithColumn("arrowVectorUdf", arrowVectorUdf(dataFrame["array"]));
dataFrame = dataFrame.WithColumn("dataFrameVector", dataFrameVector(dataFrame["array"]));
Above Udfs will work, if i send the "id" column instead of "array" column. I'm not sure , what type should be the argument of the Udfs for "array" column. Above code results same error like below for Apache.Arrow and Microsoft.Data.Analysis,
[2021-03-25T07:02:05.9218517Z] [LAPTOP-0S8GNQ52] [Error] [TaskRunner] [0] Exiting with exception: System.IO.InvalidDataException: Arrow primitive 'List' is unsupported.
at Apache.Arrow.Ipc.MessageSerializer.GetFieldArrowType(Field field)
at Apache.Arrow.Ipc.MessageSerializer.GetSchema(Schema schema)
at Apache.Arrow.Ipc.ArrowStreamReaderImplementation.<ReadSchema>b__12_0(Memory`1 buff)
at Apache.Arrow.ArrayPoolExtensions.RentReturn(ArrayPool`1 pool, Int32 length, Action`1 action)
at Apache.Arrow.Ipc.ArrowStreamReaderImplementation.ReadRecordBatch()
at Microsoft.Spark.Worker.Command.ArrowBasedCommandExecutor.<GetInputIterator>d__2.MoveNext()
at Microsoft.Spark.Worker.Command.ArrowOrDataFrameSqlCommandExecutor.ExecuteDataFrameSqlCommand(Stream inputStream, Stream outputStream, SqlCommand[] commands)
at Microsoft.Spark.Worker.TaskRunner.ProcessStream(Stream inputStream, Stream outputStream, Version version, Boolean& readComplete)
at Microsoft.Spark.Worker.TaskRunner.Run()
[2021-03-25T07:02:05.9245061Z] [LAPTOP-0S8GNQ52] [Info] [TaskRunner] [0] Finished running 0 task(s).
[2021-03-25T07:02:05.9249567Z] [LAPTOP-0S8GNQ52] [Info] [SimpleWorker] RunSimpleWorker() finished successfully
21/03/25 12:32:05 ERROR Executor: Exception in task 0.0 in stage 4.0 (TID 4)
java.lang.IllegalArgumentException
at java.nio.ByteBuffer.allocate(ByteBuffer.java:334)
at org.apache.arrow.vector.ipc.message.MessageSerializer.readMessage(MessageSerializer.java:669)
at org.apache.arrow.vector.ipc.message.MessageChannelReader.readNext(MessageChannelReader.java:58)
at org.apache.arrow.vector.ipc.ArrowStreamReader.readSchema(ArrowStreamReader.java:163)
at org.apache.arrow.vector.ipc.ArrowReader.initialize(ArrowReader.java:169)
at org.apache.arrow.vector.ipc.ArrowReader.ensureInitialized(ArrowReader.java:160)
at org.apache.arrow.vector.ipc.ArrowReader.getVectorSchemaRoot(ArrowReader.java:62)
at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:89)
at org.apache.spark.sql.execution.python.PythonArrowOutput$$anon$1.read(PythonArrowOutput.scala:49)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:456)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:489)
at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:458)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage3.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:340)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
21/03/25 12:32:06 ERROR TaskSetManager: Task 0 in stage 4.0 failed 1 times; aborting job
21/03/25 12:32:06 ERROR DotnetBackendHandler: Failed to execute 'showString' on 'org.apache.spark.sql.Dataset' with args=([Type=java.lang.Integer, Value: 20], [Type=java.lang.Integer, Value: 20], [Type=java.lang.Boolean, Value: false])
It works for me with both of your code samples. I've created the spark environment just like you, except that the environment was not working for me with Hadoop 2.7 and I separately installed Hadoop 2.7.4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With