I am a C# developer. Coming from OO side of the world, I start with thinking in terms of interfaces, classes and type hierarchies. Because of lack of OO in Haskell, sometimes I find myself stuck and I cannot think of a way to model certain problems with Haskell.
How to model, in Haskell, real world situations involving class hierarchies such as the one shown here: http://www.braindelay.com/danielbray/endangered-object-oriented-programming/isHierarchy-4.gif
First of all: Standard OO design is not going to work nicely in Haskell. You can fight the language and try to make something similar, but it will be an exercise in frustration. So step one is look for Haskell-style solutions to your problem instead of looking for ways to write an OOP-style solution in Haskell.
But that's easier said than done! Where to even start?
So, let's disassemble the gritty details of what OOP does for us, and think about how those might look in Haskell.
protected
or internal
members.map
with its arguments flipped. If you apply it to a list of Int
s, you'll get a function of type (Int -> b) -> [b]
. The list you gave it is still "there", in a sense, but nothing else can use it except through the function. This is comparable to private
members, and the original function that's being partially applied is comparable to an OOP-style constructor.fold
functions, which generalize almost all iterative loops, list transformations, and linearly recursive functions.sort
has type (Ord a) => [a] -> [a]
; it's completely decoupled from the details of the type you give it other than it must be a list of some type implementing Ord
.You might also find this blog post helpful; it gives a quick summary of what you'd use in Haskell to solve the same problems that some standard Design Patterns are often used for in OOP.
As a final addendum, as a C# programmer, you might find it interesting to research the connections between it and Haskell. Quite a few people responsible for C# are also Haskell programmers, and some recent additions to C# were heavily influenced by Haskell. Most notable is probably the monadic structure underlying LINQ, with IEnumerable being essentially the list monad.
Let's assume the following operations: Humans can speak, Dogs can bark, and all members of a species can mate with members of the same species if they have opposite gender. I would define this in haskell like this:
data Gender = Male | Female deriving Eq
class Species s where
gender :: s -> Gender
-- Returns true if s1 and s2 can conceive offspring
matable :: Species a => a -> a -> Bool
matable s1 s2 = gender s1 /= gender s2
data Human = Man | Woman
data Canine = Dog | Bitch
instance Species Human where
gender Man = Male
gender Woman = Female
instance Species Canine where
gender Dog = Male
gender Bitch = Female
bark Dog = "woof"
bark Bitch = "wow"
speak Man s = "The man says " ++ s
speak Woman s = "The woman says " ++ s
Now the operation matable
has type Species s => s -> s -> Bool
, bark
has type Canine -> String
and speak
has type Human -> String -> String
.
I don't know whether this helps, but given the rather abstract nature of the question, that's the best I could come up with.
Edit: In response to Daniel's comment:
A simple hierarchy for collections could look like this (ignoring already existing classes like Foldable and Functor):
class Foldable f where
fold :: (a -> b -> a) -> a -> f b -> a
class Foldable m => Collection m where
cmap :: (a -> b) -> m a -> m b
cfilter :: (a -> Bool) -> m a -> m a
class Indexable i where
atIndex :: i a -> Int -> a
instance Foldable [] where
fold = foldl
instance Collection [] where
cmap = map
cfilter = filter
instance Indexable [] where
atIndex = (!!)
sumOfEvenElements :: (Integral a, Collection c) => c a -> a
sumOfEvenElements c = fold (+) 0 (cfilter even c)
Now sumOfEvenElements takes any kind of collection of integrals and returns the sum of all even elements of that collection.
Instead of classes and objects, Haskell uses abstract data types. These are really two compatible views on the problem of organizing ways of constructing and observing information. The best help I know of on this subject is William Cook's essay Object-Oriented Programming Versus Abstract Data Types. He has some very clear explanations to the effect that
In a class-based system, code is organized around different ways of constructing abstractions. Generally each different way of constructing an abstraction is assigned its own class. The methods know how to observe properties of that construction only.
In an ADT-based system (like Haskell), code is organized around different ways of observing abstractions. Generally each different way of observing an abstraction is assigned its own function. The function knows all the ways the abstraction could be constructed, and it knows how to observe a single property, but of any construction.
Cook's paper will show you a nice matrix layout of abstractions and teach you how to organize any class as an ADY or vice versa.
Class hierarchies involve one more element: the reuse of implementations through inheritance. In Haskell, such reuse is achieved through first-class functions instead: a function in a Primate
abstraction is a value and an implementation of the Human
abstraction can reuse any functions of the Primate
abstraction, can wrap them to modify their results, and so on.
There is not an exact fit between design with class hierarchies and design with abstract data types. If you try to transliterate from one to the other, you will wind up with something awkward and not idiomatic—kind of like a FORTRAN program written in Java. But if you understand the principles of class hierarchies and the principles of abstract data types, you can take a solution to a problem in one style and craft a reasonably idiomatic solution to the same problem in the other style. It does take practice.
Addendum: It's also possible to use Haskell's type-class system to try to emulate class hierarchies, but that's a different kettle of fish. Type classes are similar enough to ordinary classes that a number of standard examples work, but they are different enough that there can also be some very big surprises and misfits. While type classes are an invaluable tool for a Haskell programmer, I would recommend that anyone learning Haskell learn to design programs using abstract data types.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With