I have:
import numpy as np
position = np.array([4, 4.34, 4.69, 5.02, 5.3, 5.7, ..., 4])
x = (B/position**2)*dt
A = np.cumsum(x)
assert A[0] == 0 # I want this to be true.
Where B
and dt
are scalar constants. This is for a numerical integration problem with initial condition of A[0] = 0
. Is there a way to set A[0] = 0
and then do a cumsum
for everything else?
I don't understand what exactly your problem is, but here are some things you can do to have A[0] = 0
.
You can create A to be longer by one index to have the zero as the first entry:
# initialize example data
import numpy as np
B = 1
dt = 1
position = np.array([4, 4.34, 4.69, 5.02, 5.3, 5.7])
# do calculation
A = np.zeros(len(position) + 1)
A[1:] = np.cumsum((B/position**2)*dt)
Result:
A = [ 0. 0.0625 0.11559096 0.16105356 0.20073547 0.23633533 0.26711403]
len(A) == len(position) + 1
Alternatively, you can manipulate the calculation to substract the first entry of the result:
# initialize example data
import numpy as np
B = 1
dt = 1
position = np.array([4, 4.34, 4.69, 5.02, 5.3, 5.7])
# do calculation
A = np.cumsum((B/position**2)*dt)
A = A - A[0]
Result:
[ 0. 0.05309096 0.09855356 0.13823547 0.17383533 0.20461403]
len(A) == len(position)
As you see, the results have different lengths. Is one of them what you expect?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With