I was trying to replicate this style of HeatMap
that maps continuous values to a LinearColorMapper
instance: http://docs.bokeh.org/en/latest/docs/gallery/unemployment.html
I wanted to make a HeatMap
(w/ either charts
or rect
) and then add a single selection widget to select the obsv_id
and then a slider widget to go through the dates
.
However, I was having trouble in the beginning with the HeatMap
itself with a single obsv_id
/date
pair. What am I doing wrong in creating this HeatMap
? This would essentially be a 3x3 rectangle plot of the size
variable and the loc
variable.
Bonus: Can you help me/give some advice on how to wire the output of these widgets to control the plot?
I saw these posts but all of the examples use actual hex colors as a list instead of mapping using a continuous measure: python bokeh, how to make a correlation plot? http://docs.bokeh.org/en/latest/docs/gallery/categorical.html
# Init
import numpy as np
import pandas as pd
from bokeh.plotting import figure, output_notebook, output_file, reset_output, show, ColumnDataSource
from bokeh.models import LinearColorMapper
reset_output()
output_notebook()
np.random.seed(0)
# Coords
dates = ["07-3","07-11","08-6","08-28"]
#locs = ["air","water","earth"]
locs = [0,1,2]
size = [3.0, 0.2, 0.025]
observations = ["obsv_%d"%_ for _ in range(10)]
# Data
Ar_tmp = np.zeros(( len(dates)*len(locs)*len(size)*len(observations), 5 ), dtype=object)
i = 0
for date in dates:
for loc in locs:
for s in size:
for obsv_id in observations:
Ar_tmp[i,:] = np.array([obsv_id, date, loc, s, np.random.random()])
i += 1
DF_tmp = pd.DataFrame(Ar_tmp, columns=["obsv_id", "date", "loc", "size", "value"])
DF_tmp["value"] = DF_tmp["value"].astype(float)
DF_tmp["size"] = DF_tmp["size"].astype(float)
DF_tmp["loc"] = DF_tmp["loc"].astype(float)
# obsv_id date loc size value
# 0 obsv_0 07-3 air 3.0 0.548814
# 1 obsv_1 07-3 air 3.0 0.715189
# 2 obsv_2 07-3 air 3.0 0.602763
# 3 obsv_3 07-3 air 3.0 0.544883
# 4 obsv_4 07-3 air 3.0 0.423655
mapper = LinearColorMapper(low = DF_tmp["value"].min(), high = DF_tmp["value"].max())
# # Create Heatmap of a single observation and date pair
query_idx = set(DF_tmp.index[DF_tmp["obsv_id"] == "obsv_0"]) & set(DF_tmp.index[DF_tmp["date"] == "08-28"])
# p = HeatMap(data=DF_tmp.loc[query_idx,:], x="loc", y="size", values="value")
p = figure()
p.rect(x="loc", y="size",
source=ColumnDataSource(DF_tmp.loc[query_idx,:]),
fill_color={'field': 'value', 'transform': mapper},
line_color=None)
show(p)
My Error:
# Javascript error adding output!
# TypeError: Cannot read property 'length' of null
# See your browser Javascript console for more details.
You have to provide a palette to LinearColorMapper
. For example:
mapper = LinearColorMapper(
palette='Magma256',
low=DF_tmp["value"].min(),
high=DF_tmp["value"].max()
)
From the LinearColorMapper doc:
class LinearColorMapper(palette=None, **kwargs)
Map numbers in a range [low, high] linearly into a sequence of colors (a palette).
Not related to your exception, but you'll also need to pass a width
and height
parameters to p.rect()
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With