Received wisdom is to prefer scipy.linalg
over numpy.linalg
functions. For doing linear algebra, ideally (and conveniently) I would like to combine the functionalities of numpy.array
and scipy.linalg
without ever looking towards numpy.linalg
. This is not always possible and may become too frustrating.
Is there a comparative checklist of equivalent functions from these two modules to quickly determine when to use numpy.linalg
in case a function is absent in scipy.linalg
?
e.g. There are scipy.linalg.norm()
and numpy.linalg.norm()
, but there seem to be no scipy equivalents of numpy.linalg.matrix_rank()
and numpy.linalg.cond()
.
So, the normal rule is to just use scipy.linalg
as it generally supports all of the numpy.linalg
functionality and more. The documentation says this:
See also
numpy.linalg
for more linear algebra functions. Note that althoughscipy.linalg
imports most of them, identically named functions fromscipy.linalg
may offer more or slightly differing functionality.
However, matrix_rank()
is only in NumPy.
Here we can see the differences between the functions provided by both libraries, and how SciPy is more complete:
In [2]: from scipy import linalg as scipy_linalg
In [3]: from numpy import linalg as numpy_linalg
In [4]: dir(scipy_linalg)
Out[4]:
[
...
'absolute_import',
'basic',
'bench',
'blas',
'block_diag',
'cho_factor',
'cho_solve',
'cho_solve_banded',
'cholesky',
'cholesky_banded',
'circulant',
'companion',
'coshm',
'cosm',
'cython_blas',
'cython_lapack',
'decomp',
'decomp_cholesky',
'decomp_lu',
'decomp_qr',
'decomp_schur',
'decomp_svd',
'det',
'dft',
'diagsvd',
'division',
'eig',
'eig_banded',
'eigh',
'eigvals',
'eigvals_banded',
'eigvalsh',
'expm',
'expm2',
'expm3',
'expm_cond',
'expm_frechet',
'find_best_blas_type',
'flinalg',
'fractional_matrix_power',
'funm',
'get_blas_funcs',
'get_lapack_funcs',
'hadamard',
'hankel',
'helmert',
'hessenberg',
'hilbert',
'inv',
'invhilbert',
'invpascal',
'kron',
'lapack',
'leslie',
'linalg_version',
'logm',
'lstsq',
'lu',
'lu_factor',
'lu_solve',
'matfuncs',
'misc',
'norm',
'ordqz',
'orth',
'orthogonal_procrustes',
'pascal',
'pinv',
'pinv2',
'pinvh',
'polar',
'print_function',
'qr',
'qr_delete',
'qr_insert',
'qr_multiply',
'qr_update',
'qz',
'rq',
'rsf2csf',
's',
'schur',
'signm',
'sinhm',
'sinm',
'solve',
'solve_banded',
'solve_circulant',
'solve_continuous_are',
'solve_discrete_are',
'solve_discrete_lyapunov',
'solve_lyapunov',
'solve_sylvester',
'solve_toeplitz',
'solve_triangular',
'solveh_banded',
'special_matrices',
'sqrtm',
'svd',
'svdvals',
'tanhm',
'tanm',
'test',
'toeplitz',
'tri',
'tril',
'triu']
In [5]: dir(numpy_linalg)
Out[5]:
[
...
'absolute_import',
'bench',
'cholesky',
'cond',
'det',
'division',
'eig',
'eigh',
'eigvals',
'eigvalsh',
'info',
'inv',
'lapack_lite',
'linalg',
'lstsq',
'matrix_power',
'matrix_rank',
'multi_dot',
'norm',
'pinv',
'print_function',
'qr',
'slogdet',
'solve',
'svd',
'tensorinv',
'tensorsolve',
'test']
In [6]:
Note that not all of these are functions.
SciPy does provide scipy.linalg.expm_cond()
, but this only returns the condition in the Frobenius norm, whereas numpy.linalg.cond()
supports multiple norms.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With