I have a very large dataset, that looks like
df = pd.DataFrame({'B': ['john smith', 'john doe', 'adam smith', 'john doe', np.nan], 'C': ['indiana jones', 'duck mc duck', 'batman','duck mc duck',np.nan]})
df
Out[173]:
B C
0 john smith indiana jones
1 john doe duck mc duck
2 adam smith batman
3 john doe duck mc duck
4 NaN NaN
I need to create a ID variable, that is unique for every B-C combination. That is, the output should be
B C ID
0 john smith indiana jones 1
1 john doe duck mc duck 2
2 adam smith batman 3
3 john doe duck mc duck 2
4 NaN NaN 0
I actually dont care about whether the index starts at zero or not, and whether the value for the missing columns is 0 or any other number. I just want something fast, that does not take a lot of memory and can be sorted quickly. I use:
df['combined_id']=(df.B+df.C).rank(method='dense')
but the output is float64
and takes a lot of memory. Can we do better?
Thanks!
You can get unique values in column (multiple columns) from pandas DataFrame using unique() or Series. unique() functions. unique() from Series is used to get unique values from a single column and the other one is used to get from multiple columns.
To count unique values in the pandas dataframe column use Series. unique() function and then call the size to get the count. Series.
I think you can use factorize
:
df['combined_id'] = pd.factorize(df.B+df.C)[0]
print df
B C combined_id
0 john smith indiana jones 0
1 john doe duck mc duck 1
2 adam smith batman 2
3 john doe duck mc duck 1
4 NaN NaN -1
Making jezrael's answer a little more general (what if the columns were not string?), you can use this compact function:
def make_identifier(df):
str_id = df.apply(lambda x: '_'.join(map(str, x)), axis=1)
return pd.factorize(str_id)[0]
df['combined_id'] = make_identifier(df[['B','C']])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With