How can we make sure that a calculated value will not be copied back to CPU/python memory, but is still available for calculations in the next step?
The following code obviously doesn't do it:
import tensorflow as tf
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = result
with tf.Session() as s:
val = s.run([result,stored],{a:1.,b:2.})
print(val) # 3
val=s.run([result],{a:4.,b:5.})
print(val) # 9
print(stored.eval()) # 3 NOPE:
Error : Attempting to use uninitialized value _recv_b_0
The answer is to store the value in a tf.Variable
by storing to it using the assign operation:
working code:
import tensorflow as tf
with tf.Session() as s:
a = tf.Variable(tf.constant(1.),name="a")
b = tf.Variable(tf.constant(2.),name="b")
result = a + b
stored = tf.Variable(tf.constant(0.),name="stored_sum")
assign_op=stored.assign(result)
val,_ = s.run([result,assign_op],{a:1.,b:2.})
print(val) # 3
val=s.run(result,{a:4.,b:5.})
print(val[0]) # 9
print(stored.eval()) # ok, still 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With