from keras import backend as K
from tensorflow.keras.layers import MaxPooling2D,Conv2D,Input,Add,Flatten,AveragePooling2D,Dense,BatchNormalization,ZeroPadding2D,Activation
from tensorflow.keras.models import Model
def Dense_Layer(x,k):
x = BatchNormalization(axis = 3)(x)
x = Activation('relu')(x)
x = Conv2D(4*k,(1,1),strides = (1,1))(x)
x = BatchNormalization(axis = 3)(x)
x = Activation('relu')(x)
x = Conv2D(k,(1,1),strides = (1,1))(x)
return x
def Dense_Block(x,k):
x1 = Dense_Layer(x,k)
x1_add = keras.layers.Concatenate()([x1,x])
x2 = Dense_Layer(x1_add,k)
x2_add = keras.layers.Concatenate()([x1,x2])
return x2_add
def Dilated_Spatial_Pyramid_Pooling(x,k):
x = BatchNormalization(axis = 3)(x)
d1 = Conv2D(k, (1,1), dilation_rate = 2)(x)
d2 = Conv2D(k, (1,1), dilation_rate = 4)(d1)
d3 = Conv2D(k, (1,1), dilation_rate = 8)(d2)
d4 = Conv2D(k, (1,1), dilation_rate = 16)(d3)
c = keras.layers.Concatenate()([d1,d2,d3,d4])
return c
def down_block(x,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
c = Dense_Block(x,filters)
c = Dense_Block(c,filters)
p = keras.layers.MaxPool2D((2,2),(2,2))(c)
return c,p
def up_block(x,skip,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
us = keras.layers.UpSampling2D((2,2))(x)
concat = keras.layers.Concatenate()([us,skip])
c = Dense_Block(concat,filters)
c = Dense_Block(c,filters)
return c
def bottleneck(x,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
c = Dense_Block(x,filters)
c = Dense_Block(c,filters)
c = Dilated_Spatial_Pyramid_Pooling(c,filters)
return c
def UNet():
f = [32,64,128,256]
input = keras.layers.Input((128,128,1))
p0 = input
c1,p1 = down_block(p0,f[0])
c2,p2 = down_block(p1,f[1])
c3,p3 = down_block(p2,f[2])
bn = bottleneck(p3,f[3])
u1 = up_block(bn,c3,f[2])
u2 = up_block(u1,c2,f[1])
u3 = up_block(u2,c1,f[0])
outputs = keras.layers.Conv2D(1,(1,1),padding= "same",activation = "sigmoid")(u3)
model = keras.models.Model(input,outputs)
return model
model=UNet()
model.summary()
my versions are:
pip install q tensorflow==2.1
pip install q keras==2.3.1
pip install imgaug
pip install -U segmentation-models
I am using UNET using dense block instead of convulational layer with dilated spatial pooling layer in bottlenack layer. but i am getting ModuleNotFoundError: No module named 'tensorflow.python.keras.engine.base_layer_v1'
I came across similar error some time back and resolved this by importing all modules from tensorflow.
Please refer working code in below
from tensorflow.keras.layers import MaxPooling2D,Conv2D,Input,Add,MaxPool2D,Flatten,AveragePooling2D,Dense,BatchNormalization,ZeroPadding2D,Activation,Concatenate,UpSampling2D
from tensorflow.keras.models import Model
def Dense_Layer(x,k):
x = BatchNormalization(axis = 3)(x)
x = Activation('relu')(x)
x = Conv2D(4*k,(1,1),strides = (1,1))(x)
x = BatchNormalization(axis = 3)(x)
x = Activation('relu')(x)
x = Conv2D(k,(1,1),strides = (1,1))(x)
return x
def Dense_Block(x,k):
x1 = Dense_Layer(x,k)
x1_add = Concatenate()([x1,x])
x2 = Dense_Layer(x1_add,k)
x2_add = Concatenate()([x1,x2])
return x2_add
def Dilated_Spatial_Pyramid_Pooling(x,k):
x = BatchNormalization(axis = 3)(x)
d1 = Conv2D(k, (1,1), dilation_rate = 2)(x)
d2 = Conv2D(k, (1,1), dilation_rate = 4)(d1)
d3 = Conv2D(k, (1,1), dilation_rate = 8)(d2)
d4 = Conv2D(k, (1,1), dilation_rate = 16)(d3)
c = Concatenate()([d1,d2,d3,d4])
return c
def down_block(x,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
c = Dense_Block(x,filters)
c = Dense_Block(c,filters)
p = MaxPool2D((2,2),(2,2))(c)
return c,p
def up_block(x,skip,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
us = UpSampling2D((2,2))(x)
concat = Concatenate()([us,skip])
c = Dense_Block(concat,filters)
c = Dense_Block(c,filters)
return c
def bottleneck(x,filters, kernel_size = (3, 3), padding = "same",strides =1 ):
c = Dense_Block(x,filters)
c = Dense_Block(c,filters)
c = Dilated_Spatial_Pyramid_Pooling(c,filters)
return c
def UNet():
f = [32,64,128,256]
input = Input((128,128,1))
p0 = input
c1,p1 = down_block(p0,f[0])
c2,p2 = down_block(p1,f[1])
c3,p3 = down_block(p2,f[2])
bn = bottleneck(p3,f[3])
u1 = up_block(bn,c3,f[2])
u2 = up_block(u1,c2,f[1])
u3 = up_block(u2,c1,f[0])
outputs = Conv2D(1,(1,1),padding= "same",activation = "sigmoid")(u3)
model = Model(input,outputs)
return model
model=UNet()
model.summary()
Try this command, I had the same error:
%env SM_FRAMEWORK=tf.keras
pip install keras==2.3.1
I resolved this error by installing latest version of tensorflow and keras.
pip install tensorflow==2.4.1
pip install keras==2.4.3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With