I have a container (C++) on which I need to operate in two ways, from different threads: 1) Add and remove elements, and 2) iterate through its members. Clearly, remove element while iteration is happening = disaster. The code looks something like this:
class A
{
public:
...
void AddItem(const T& item, int index) { /*Put item into my_stuff at index*/ }
void RemoveItem(const T& item) { /*Take item out of m_stuff*/ }
const list<T>& MyStuff() { return my_stuff; } //*Hate* this, but see class C
private:
Mutex mutex; //Goes in the *Item methods, but is largely worthless in MyStuff()
list<T> my_stuff; //Just as well a vector or deque
};
extern A a; //defined in the .cpp file
class B
{
...
void SomeFunction() { ... a.RemoveItem(item); }
};
class C
{
...
void IterateOverStuff()
{
const list<T>& my_stuff(a.MyStuff());
for (list<T>::const_iterator it=my_stuff.begin(); it!=my_stuff.end(); ++it)
{
...
}
}
};
Again, B::SomeFunction()
and C::IterateOverStuff()
are getting called asynchronously. What's a data structure I can use to ensure that during the iteration, my_stuff
is 'protected' from add or remove operations?
Iterators are still not threadsafe. The solution to this iteration problem will be to acquire the collection's lock when you need to iterate over it, which we'll talk about in a future reading.
The C++11 standard does not expect to be able to safely call non const functions simultaneously. Therefore all classes available from the standard, e.g. std::vector<>, can safely be accessed from multiple threads in the same manner.
The foreach operation itself is not thread safe. Say if you run a foreach loop to remove item from forward direction, it'll fail with "Collection was modified; enumeration operation may not execute." exception message.
An iterator is used to point to the memory address of the STL container classes. For better understanding, you can relate them with a pointer, to some extent. Iterators act as a bridge that connects algorithms to STL containers and allows the modifications of the data present inside the container.
IMHO it is a mistake to have a private mutex in a data structure class and then write the class methods so that the whole thing is thread safe no matter what the code that calls the methods does. The complexity that is required to do this completely and perfectly is way over the top.
The simpler way is to have a public ( or global ) mutex which the calling code is responsible for locking when it needs to access the data.
Here is my blog article on this subject.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With