I have a data set with first column is the Date and Second column is the Price. The Date is trading days.
I want to return a table looks like this:
Where the date is each Month starting from 2006, price MA is the average price of past N months.(N = [1,2,3,4,5,6])
So for example: If I want N = 1 at Jan.1 2006 Ma should be the average price from December last year If N =2 Ma should be the average price from Nov and December last year
I have read some solution about Extract month from datetime and groupby. But don't know how to put them up together.
Or you simply try
df.sort_index(ascending=False).rolling(5).mean().sort_index(ascending=True)
For your additional question
index=pd.date_range(start="4th of July 2017",periods=30,freq="D")
df=pd.DataFrame(np.random.randint(0,100,30),index=index)
df['Month']=df.index
df.Month=df.Month.astype(str).str[0:7]
df.groupby('Month')[0].mean()
Out[162]:
Month
2017-07 47.178571
2017-08 56.000000
Name: 0, dtype: float64
EDIT 3 : For missing value rolling two month mean
index=pd.date_range(start="4th of July 2017",periods=300,freq="D")
df=pd.DataFrame(np.random.randint(0,100,300),index=index)
df['Month']=df.index
df.Month=df.Month.astype(str).str[0:7]
df=df.groupby('Month')[0].agg({'sum':'sum','count':'count'})
df['sum'].rolling(2).sum()/df['count'].rolling(2).sum()
Out[200]:
Month
2017-07 NaN
2017-08 43.932203
2017-09 45.295082
2017-10 46.967213
2017-11 46.327869
2017-12 49.081967
#etc
Will return the rolling mean for the number of periods specified with the window parameter. E.g. window=1 will retunr the original list. Window=2 will calculate the mean for 2 days and so on.
index=pd.date_range(start="4th of July 2017",periods=30,freq="D")
df=pd.DataFrame(np.random.randint(0,100,30),index=index)
print([pd.rolling_mean(df,window=i,freq="D") for i in range(1,5)])
.....
2017-07-04 NaN
2017-07-05 20.5
2017-07-06 64.5
2017-07-07 58.5
2017-07-08 13.0
2017-07-09 4.5
2017-07-10 17.5
2017-07-11 23.5
2017-07-12 40.5
2017-07-13 60.0
2017-07-14 73.0
2017-07-15 90.0
2017-07-16 56.5
2017-07-17 55.0
2017-07-18 57.0
2017-07-19 45.0
2017-07-20 77.0
2017-07-21 46.5
2017-07-22 3.5
2017-07-23 48.5
2017-07-24 71.5
2017-07-25 52.0
2017-07-26 56.5
2017-07-27 47.5
2017-07-28 64.0
2017-07-29 82.0
2017-07-30 68.0
2017-07-31 72.5
2017-08-01 58.5
2017-08-02 67.0
.....
Further you can drop NA values with the df dropna method like:
df.rolling(window=2,freq="D").mean().dropna() #Here you must adjust the window size
So the whole code which should print you the rolling mean for the months is:
print([df.rolling(i,freq="m").mean().dropna() for i in range(len(df.rolling(window=1,freq="m").sum()))])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With