I get an error implementing a DNNClassifier in Tensorflow 1.3.0 with Python 2.7. I got the sample code from the Tensorflow tf.estimator Quickstart
Tutorial and I want to run it with my own dataset: 3D coordinates and 10 different classes (int labels). Here is my implementation:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def ReadLabels(file):
#load the labels from test file here
labelFile = open(file, "r")
Label = labelFile.readlines();
returnL = [[Label[i][j+1] for j in range(len(Label[0])-3)] for i in range(len(Label))]
returnLint = list();
for i in range(len(returnL)):
tmp = ''
for j in range(len(returnL[0])):
tmp += str(returnL[i][j])
returnLint.append(int(tmp))
return returnL, returnLint
def NumpyReadBin(file,numcols,type):
#load the data from binary file here
import numpy as np
trainData = np.fromfile(file,dtype=type)
numrows = len(trainData)/numcols
#print trainData[0:100]
result = [[trainData[i+j*numcols] for i in range(numcols)] for j in range(numrows)]
return result
def TensorflowDNN():
#load sample dataset
trainData = NumpyReadBin('data/TrainingData.dat',3,'float32')
valData = NumpyReadBin('data/ValidationData.dat',3,'float32')
testData = NumpyReadBin('data/TestingData.dat',3,'float32')
#load sample labels
trainL, trainLint = ReadLabels('data/TrainingLabels.txt')
validateL, validateLint = ReadLabels('data/ValidationLabels.txt')
testL, testLint = ReadLabels('data/TestingLabels.txt')
import tensorflow as tf
import numpy as np
#get unique labels
uniqueTrain = set()
for l in trainLint:
uniqueTrain.add(l)
uniqueTrain = list(uniqueTrain)
numClasses = len(uniqueTrain)
numDims = len(trainData[0])
#All features have real-value data
feature_columns = [tf.feature_column.numeric_column("x", shape=[3])]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=numClasses,
model_dir="../Classification/tmp")
# Define training inputs
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(trainData)},y=np.array(trainLint),
num_epochs = None, shuffle = True)
#Train the model
classifier.train(input_fn = train_input_fn, steps = 2000)
#Define Validation inputs
val_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(valData)},y=np.array(validateLint),
num_epochs = 1, shuffle = False)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=val_input_fn)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
if __name__ == '__main__':
TensorflowDNN()
The Functions RedLabels(...)
and NumpyReadBin(...)
are loading my saved dataset in tensors. Since the labels are integer numbers that I read from a text file the function is a bit weird, but what I get in the end is an array with integers from tese labels: [11, 12, 21, 22, 23, 31, 32, 33, 41, 42].
However I am not able to classify anything, because upon calling classifier.train(input_fn = train_input_fn, steps = 2000)
, I get the following error:
...Traceback and stuff like that...
InvalidArgumentError (see above for traceback): assertion failed: [Label IDs must < n_classes] [Condition x < y did not hold element-wise:x (dnn/head/labels:0) = ] [[21][32][42]...] [y (dnn/head/assert_range/Const:0) = ] [10]
[[Node: dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert = Assert[T=[DT_STRING, DT_STRING, DT_INT64, DT_STRING, DT_INT64], summarize=3, _device="/job:localhost/replica:0/task:0/cpu:0"](dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/Switch/_117, dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/data_0, dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/data_1, dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/Switch_1/_119, dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/data_3, dnn/head/assert_range/assert_less/Assert/AssertGuard/Assert/Switch_2/_121)]]
Did anyone come across this error before or has an idea how to solve it? I guess it is somehow complaining about the number of classes/format of labels in my dataset, but I know that trainLint contains 10 different classlabels, and that is the value of numClasses
. Could it be the format of my trainLint
array?
So the solution as Ishant Mrinal pointed out:
Tensorflow expects the integers from 0 up to the number of classes as class labels (range(0, num_classes)
), not "arbitrary" numbers like in my case. Thanks!:)
...The other option I just came across is to add a label_vocabulary
to the classifier-definition:
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=numClasses,
model_dir=saveAt,
label_vocabulary=uniqueTrain)
With this option I can define the labels like I had before, converted to strings.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With