Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to get access of individual trees of a xgboost model in python /R

How to get access of individual trees of a xgboost model in python/R ?

Below I'm getting from Random Forest trees from sklearn.

estimator = RandomForestRegressor(
    oob_score=True, 
    n_estimators=10, 
    max_features='auto'
) 
estimator.fit(tarning_data,traning_target) 
tree1 = estimator.estimators_[0]
leftChild = tree1.tree_.children_left  
rightChild = tree1.tree_.children_right 
like image 782
ashis Avatar asked Jun 07 '16 10:06

ashis


People also ask

How do I specify the number of trees in XGBoost?

The number of trees (or rounds) in an XGBoost model is specified to the XGBClassifier or XGBRegressor class in the n_estimators argument. The default in the XGBoost library is 100.

How do I get predictions on XGBoost?

To make predictions we use the scikit-learn function model. predict(). By default, the predictions made by XGBoost are probabilities. Because this is a binary classification problem, each prediction is the probability of the input pattern belonging to the first class.


1 Answers

Do you want to inspect the trees?

In Python, you can dump the trees as a list of strings:

m = xgb.XGBClassifier(max_depth=2, n_estimators=3).fit(X, y)
m.get_booster().get_dump()

>

['0:[sincelastrun<23.2917] yes=1,no=2,missing=2\n\t1:[sincelastrun<18.0417] yes=3,no=4,missing=4\n\t\t3:leaf=-0.0965415\n\t\t4:leaf=-0.0679503\n\t2:[sincelastrun<695.025] yes=5,no=6,missing=6\n\t\t5:leaf=-0.0992546\n\t\t6:leaf=-0.0984374\n',
 '0:[sincelastrun<23.2917] yes=1,no=2,missing=2\n\t1:[sincelastrun<16.8917] yes=3,no=4,missing=4\n\t\t3:leaf=-0.0928132\n\t\t4:leaf=-0.0676056\n\t2:[sincelastrun<695.025] yes=5,no=6,missing=6\n\t\t5:leaf=-0.0945284\n\t\t6:leaf=-0.0937463\n',
 '0:[sincelastrun<23.2917] yes=1,no=2,missing=2\n\t1:[sincelastrun<18.175] yes=3,no=4,missing=4\n\t\t3:leaf=-0.0878571\n\t\t4:leaf=-0.0610089\n\t2:[sincelastrun<695.025] yes=5,no=6,missing=6\n\t\t5:leaf=-0.0904395\n\t\t6:leaf=-0.0896808\n']

Or dump them to a file (with nice formatting):

m.get_booster().dump_model("out.txt")

>

booster[0]:
0:[sincelastrun<23.2917] yes=1,no=2,missing=2
    1:[sincelastrun<18.0417] yes=3,no=4,missing=4
        3:leaf=-0.0965415
        4:leaf=-0.0679503
    2:[sincelastrun<695.025] yes=5,no=6,missing=6
        5:leaf=-0.0992546
        6:leaf=-0.0984374
booster[1]:
0:[sincelastrun<23.2917] yes=1,no=2,missing=2
    1:[sincelastrun<16.8917] yes=3,no=4,missing=4
        3:leaf=-0.0928132
        4:leaf=-0.0676056
    2:[sincelastrun<695.025] yes=5,no=6,missing=6
        5:leaf=-0.0945284
        6:leaf=-0.0937463
booster[2]:
0:[sincelastrun<23.2917] yes=1,no=2,missing=2
    1:[sincelastrun<18.175] yes=3,no=4,missing=4
        3:leaf=-0.0878571
        4:leaf=-0.0610089
    2:[sincelastrun<695.025] yes=5,no=6,missing=6
        5:leaf=-0.0904395
        6:leaf=-0.0896808
like image 195
pomber Avatar answered Oct 16 '22 08:10

pomber