There are some signal generation helper functions in python's scipy, but these are only for 1 dimensional signal.
I want to generate a 2-D ideal bandpass filter, which is a matrix of all zeros, with a circle of ones to remove some periodic noise from my image.
I am now doing with:
def unit_circle(r):
def distance(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
d = 2*r + 1
mat = np.zeros((d, d))
rx , ry = d/2, d/2
for row in range(d):
for col in range(d):
dist = distance(rx, ry, row, col)
if abs(dist - r) < 0.5:
mat[row, col] = 1
return mat
result:
In [18]: unit_circle(6)
Out[18]:
array([[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[ 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0.],
[ 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.]])
Is there a more direct way to generate a matrix of circle of ones, all else zeros
?
Edit: Python 2.7.12
Here's a vectorized approach -
def unit_circle_vectorized(r):
A = np.arange(-r,r+1)**2
dists = np.sqrt(A[:,None] + A)
return (np.abs(dists-r)<0.5).astype(int)
Runtime test -
In [165]: %timeit unit_circle(100) # Original soln
10 loops, best of 3: 31.1 ms per loop
In [166]: %timeit my_unit_circle(100) #@Eli Korvigo's soln
100 loops, best of 3: 2.68 ms per loop
In [167]: %timeit unit_circle_vectorized(100)
1000 loops, best of 3: 582 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With