I have a dataframe like below:
Number Req Response
0 3 6
1 5 0
2 33 4
3 15 3
4 12 2
I would like to identify minimum 'Response' value before the 'Req' is 15.
i tried the below code:
min_val=[]
for row in range(len(df)):
#if the next row of 'Req' contains 15, append the current row value of'Response'
if(df[row+1].loc[df[row+1]['Req'] == 15]):
min_val.append(df['Response'].min())
else:
min_val.append(0)
I get 'invalid type comparison' error.
I expect the below output:
Min value of df['Response'] is: 0
If possible value 15
is not in data, use general solution:
df = df.reset_index(drop=True)
out = df.loc[df.Req.eq(15)[::-1].cumsum().ne(0), 'Response'].sort_values()
print (out)
1 0
3 3
2 4
0 6
Name: Response, dtype: int64
print (next(iter(out), 'no match'))
0
Details:
print (df.Req.eq(15))
0 False
1 False
2 False
3 True
4 False
Name: Req, dtype: bool
print (df.Req.eq(15)[::-1])
4 False
3 True
2 False
1 False
0 False
Name: Req, dtype: bool
print (df.Req.eq(15)[::-1].cumsum())
4 0
3 1
2 1
1 1
0 1
Name: Req, dtype: int32
print (df.Req.eq(15)[::-1].cumsum().ne(0))
4 False
3 True
2 True
1 True
0 True
Name: Req, dtype: bool
Test with not matched value:
print (df)
Number Req Response
0 0 3 6
1 1 5 0
2 2 33 4
3 3 150 3
4 4 12 2
df = df.reset_index(drop=True)
out = df.loc[df.Req.eq(15)[::-1].cumsum().ne(0), 'Response'].sort_values()
print (out)
Series([], Name: Response, dtype: int64)
print (next(iter(out), 'no match'))
no match
One way could be using idxmax
to find the first index where Req
is equal to 15
, use the result to index the dataframe and take the minimum Response
:
df.loc[:df.Req.eq(15).idxmax(), 'Response'].min()
# 0
Where:
df.Req.eq(15)
0 False
1 False
2 False
3 True
4 False
Name: Req, dtype: bool
And the idxmax
will return the index of the first True
occurrence, in this case 3
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With