I'm new to pytorch. I'm trying to do a cross validation, and I found the skorch library, which allow users to use sklearn functions with a torch model. So, I define a neural network class:
torch.manual_seed(42)
class Netcross(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(5,30)
self.sig1 = nn.Tanh()
#self.dout = nn.Dropout(0.2)
self.fc2 = nn.Linear(30,30)
self.sig2 = nn.Sigmoid()
self.out = nn.Linear(30, 1)
self.out_act = nn.Sigmoid()
#self.fc1.weight = torch.nn.Parameter(torch.rand(50,5))
def forward(self, x):
x = self.fc1(x)
x = self.sig1(x)
#x = self.dout(x)
x = self.fc2(x)
x = self.sig2(x)
x = self.out(x)
y = self.out_act(x)
return y
crossnet1 = NeuralNet(
Netcross,
max_epochs = 5,
criterion=torch.nn.BCELoss,
#user defined coeff.
callbacks = [epoch_acc, epoch_f1, epoch_phi],
optimizer=torch.optim.SGD,
optimizer__momentum=0.9,
lr=0.85,
)
inputs = Variable(x_traintensor)
labels = Variable(y_traintensor)
crossnet1.fit(inputs, labels)
so far everything is fine, the function returns credible results without any errors. The problem appears when I try to use the GridSearchCV function:
from sklearn.model_selection import GridSearchCV
param_grid = {'max_epochs':[5, 10, 20],
'lr': [0.1, 0.65, 0.8],
}
gs = GridSearchCV(estimator = crossnet1, param_grid = param_grid, refit = False, cv = 3, scoring = "accuracy")
gs.fit(inputs, labels)
I get the following error:
TypeError Traceback (most recent call last)
<ipython-input-41-e1f3dbd9a2b0> in <module>
3 labels1 = torch.from_numpy(np.array(labels))
4
----> 5 gs.fit(inputs1, labels1)
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
720 return results_container[0]
721
--> 722 self._run_search(evaluate_candidates)
723
724 results = results_container[0]
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in _run_search(self, evaluate_candidates)
1189 def _run_search(self, evaluate_candidates):
1190 """Search all candidates in param_grid"""
-> 1191 evaluate_candidates(ParameterGrid(self.param_grid))
1192
1193
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in evaluate_candidates(candidate_params)
709 for parameters, (train, test)
710 in product(candidate_params,
--> 711 cv.split(X, y, groups)))
712
713 all_candidate_params.extend(candidate_params)
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
915 # remaining jobs.
916 self._iterating = False
--> 917 if self.dispatch_one_batch(iterator):
918 self._iterating = self._original_iterator is not None
919
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in dispatch_one_batch(self, iterator)
757 return False
758 else:
--> 759 self._dispatch(tasks)
760 return True
761
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in _dispatch(self, batch)
714 with self._lock:
715 job_idx = len(self._jobs)
--> 716 job = self._backend.apply_async(batch, callback=cb)
717 # A job can complete so quickly than its callback is
718 # called before we get here, causing self._jobs to
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in apply_async(self, func, callback)
180 def apply_async(self, func, callback=None):
181 """Schedule a func to be run"""
--> 182 result = ImmediateResult(func)
183 if callback:
184 callback(result)
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\_parallel_backends.py in __init__(self, batch)
547 # Don't delay the application, to avoid keeping the input
548 # arguments in memory
--> 549 self.results = batch()
550
551 def get(self):
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self)
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
224 return [func(*args, **kwargs)
--> 225 for func, args, kwargs in self.items]
226
227 def __len__(self):
~\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in <listcomp>(.0)
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
224 return [func(*args, **kwargs)
--> 225 for func, args, kwargs in self.items]
226
227 def __len__(self):
~\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
516 start_time = time.time()
517
--> 518 X_train, y_train = _safe_split(estimator, X, y, train)
519 X_test, y_test = _safe_split(estimator, X, y, test, train)
520
~\Anaconda3\lib\site-packages\sklearn\utils\metaestimators.py in _safe_split(estimator, X, y, indices, train_indices)
201 X_subset = X[np.ix_(indices, train_indices)]
202 else:
--> 203 X_subset = safe_indexing(X, indices)
204
205 if y is not None:
~\Anaconda3\lib\site-packages\sklearn\utils\__init__.py in safe_indexing(X, indices)
214 indices.dtype.kind == 'i'):
215 # This is often substantially faster than X[indices]
--> 216 return X.take(indices, axis=0)
217 else:
218 return X[indices]
TypeError: take(): argument 'index' (position 1) must be Tensor, not numpy.ndarray
What is wrong?
Change your input
and labels
to np.ndarray
(see examples here).
Those will be casted to torch.Tensor
when needed automatically by skorch
.
All in all change your
inputs = Variable(x_traintensor)
labels = Variable(y_traintensor)
to:
inputs = x_traintensor.numpy() # assuming x is torch.Tensor
labels = y_traintensor.numpy() # assuming y is torch.Tensor
BTW. torch.Variable
is deprecated, you should use torch.Tensor(data, requires_grad=True)
. In this case, inputs and labels do not need gradient, hence Variable
is even more out of place.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With