Often in plots the Y axis value label is chopped off below the max value being plotted.
For example:
library(tidyverse)
mtcars %>% ggplot(aes(x=mpg, y = hp))+geom_point()
I know of scale_y_continous - but I can't figure out a smart way to do this. Maybe I'm just overthinking things. I don't wish to mess up the 'smart' breaks that are generated automatically.
I might try to go about this manually...
mtcars %>% ggplot(aes(x=mpg, y=hp, color=as.factor(carb)))+geom_point() + scale_y_continuous(limits = c(0,375))
But this doesn't work like I mentioned above because of the 'smart breaks'. Is there anyway for me to extend the default break interval to 1 more, so that in this case it would be 400? Of course I would want this to be flexible for whatever dataset I am working with.
To change the axis scales on a plot in base R Language, we can use the xlim() and ylim() functions. The xlim() and ylim() functions are convenience functions that set the limit of the x-axis and y-axis respectively.
ylim( limits ) sets the y-axis limits for the current axes or chart. Specify limits as a two-element vector of the form [ymin ymax] , where ymax is greater than ymin .
Use scale_xx() functions It is also possible to use the functions scale_x_continuous() and scale_y_continuous() to change x and y axis limits, respectively.
You can use expand_limits()
to increase the maximum y-axis value. You can also ensure that the maximum y-axis value is rounded up to the next highest value on the scale of the data, e.g., next highest tens value, next highest hundreds value, etc., depending on the whether the highest value in the data is within the tens, hundreds, etc.
For example, the function below finds the base 10 log of the maximum y value and rounds it down. This gives us the base ten scale of the maximum y value (e.g., tens, hundreds, thousands, etc.). It then rounds the maximum y-axis value up to the nearest ten, hundred, etc., that is higher than the maximum y value.
expandy = function(vec, ymin=NULL) {
max.val = max(vec, na.rm=TRUE)
min.log = floor(log10(max.val))
expand_limits(y=c(ymin, ceiling(max.val/10^min.log)*10^min.log))
}
p = mtcars %>% ggplot(aes(x=mpg, y = hp)) +
geom_point()
p + expandy(mtcars$hp)
p + expandy(mtcars$hp, 0)
Or, to make things a bit easier, you could set up the function so that the y-range data is collected directly from the plot:
library(gridExtra)
expandy = function(plot, ymin=0) {
max.y = max(layer_data(plot)$y, na.rm=TRUE)
min.log = floor(log10(max.y))
expand_limits(y=c(ymin, ceiling(max.y/10^min.log)*10^min.log))
}
p = mtcars %>% ggplot(aes(x=mpg, y = hp)) +
geom_point()
grid.arrange(p, p + expandy(p), ncol=2)
p = iris %>% ggplot(aes(x=Sepal.Width, y=Petal.Width)) +
geom_point()
grid.arrange(p, p + expandy(p), ncol=2)
Choosing a step for breaking the y axis you can use the ceiling()
function
library(gridExtra)
p1 <- mtcars %>% ggplot(aes(x=mpg, y = hp)) + geom_point()
p2 <- p1 +
scale_y_continuous(
limits = c(0, ceiling(max(mtcars$hp)/50)*50),
breaks = seq(0, ceiling(max(mtcars$hp)/50)*50, 50)
)
p3 <- p1 + scale_y_continuous(
limits = c(0, ceiling(max(mtcars$hp)/100)*100),
breaks = seq(0, ceiling(max(mtcars$hp)/100)*100, 100)
)
grid.arrange(p1, p2, p3, ncol=3)
For the p2 the ste is 50 while for p3 the step is 100
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With