I would like to create a minibatch by encoding multiple sentences using transform.BertTokenizer. It seems working for a single sentence. How to make it work for several sentences?
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# tokenize a single sentence seems working
tokenizer.encode('this is the first sentence')
>>> [2023, 2003, 1996, 2034, 6251]
# tokenize two sentences
tokenizer.encode(['this is the first sentence', 'another sentence'])
>>> [100, 100] # expecting 7 tokens
transformers >= 4.0.0:
Use __call__
method of the tokenizer. It will generate a dictionary which contains the input_ids
, token_type_ids
and the attention_mask
as list for each input sentence:
tokenizer(['this is the first sentence', 'another setence'])
Output:
{'input_ids': [[101, 2023, 2003, 1996, 2034, 6251, 102], [101, 2178, 2275, 10127, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]}
transformers < 4.0.0:
Use tokenizer.batch_encode_plus
(documentation). It will generate a dictionary which contains the input_ids
, token_type_ids
and the attention_mask
as list for each input sentence:
tokenizer.batch_encode_plus(['this is the first sentence', 'another setence'])
Output:
{'input_ids': [[101, 2023, 2003, 1996, 2034, 6251, 102], [101, 2178, 2275, 10127, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]}
Applies to call and batch_encode_plus:
In case you only want to generate the input_ids, you have to set return_token_type_ids
ans return_attention_mask
to False:
tokenizer.batch_encode_plus(['this is the first sentence', 'another setence'], return_token_type_ids=False, return_attention_mask=False)
Output:
{'input_ids': [[101, 2023, 2003, 1996, 2034, 6251, 102], [101, 2178, 2275, 10127, 102]]}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With