I trained an object detection model on Google AI platform and downloaded the model. It's a standard saved_model.pb file which I want to load in python and provide one image for inference.
The problem is that the input of this model is defined as encoded_image_string_tensor which expects a base64 encoded string. How can I encode an image file in this format in python?
print(model.inputs)
print(model.output_dtypes)
print(model.output_shapes)
[<tf.Tensor 'encoded_image_string_tensor:0' shape=(None,) dtype=string>, <tf.Tensor 'key:0' shape=(None,) dtype=string>, <tf.Tensor 'global_step:0' shape=() dtype=resource>]
{'detection_scores': tf.float32, 'detection_classes': tf.float32, 'num_detections': tf.float32, 'key': tf.string, 'detection_boxes': tf.float32}
{'detection_scores': TensorShape([None, 100]), 'detection_classes': TensorShape([None, 100]), 'num_detections': TensorShape([None]), 'key': TensorShape([None]), 'detection_boxes': TensorShape([None, 100, 4])}
The existing examples in tensorflow/models/research show how to do it with an image_tensor type of input:
image = np.asarray(image)
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
input_tensor = input_tensor[tf.newaxis,...]
When I run this code on the model with encoded_image_string_tensor as an input it produces the following error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in
1 for i in range(1):
----> 2 show_inference(model, TEST_IMAGE_PATHS[i])
in show_inference(model, image_path)
39 # print(image_np)
40 # Actual detection.
---> 41 output_dict = run_inference_for_single_image(model, image_np)
42 # Visualization of the results of a detection.
43 print(output_dict['detection_scores'][:3])
in run_inference_for_single_image(model, image)
7
8 # Run inference
----> 9 output_dict = model(input_tensor)
10
11 # All outputs are batches tensors.
~\anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\function.py in __call__(self, *args, **kwargs)
1603 TypeError: For invalid positional/keyword argument combinations.
1604 """
-> 1605 return self._call_impl(args, kwargs)
1606
1607 def _call_impl(self, args, kwargs, cancellation_manager=None):
~\anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\function.py in _call_impl(self, args, kwargs, cancellation_manager)
1622 "of {}), got {}. When calling a concrete function, positional "
1623 "arguments may not be bound to Tensors within nested structures."
-> 1624 ).format(self._num_positional_args, self._arg_keywords, args))
1625 args = list(args)
1626 for keyword in self._arg_keywords[len(args):]:
TypeError: Expected at most 0 positional arguments (and the rest keywords, of ['encoded_image', 'key']), got (,). When calling a concrete function, positional arguments may not be bound to Tensors within nested structures.
You can easily adapt the run_inference_for_single_image() function from the object_detection_tutorial.ipynb notebook (which you seem to use in your example), by using tf.io.encode_jpeg() to encode the image.
The built-in object detection model from Google AI platform also requires a key (any string-tensor with dimension of batch-size) as input, which I've also added to the model() call in the example below .
def run_inference_for_single_image(model, image):
image = np.asarray(image)
# The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
input_tensor = tf.convert_to_tensor(image)
# Encode the (numerical) tensor into an "encoded_image"
encoded_image = tf.io.encode_jpeg(input_tensor)
# The model expects a batch of images, so add an axis with `tf.newaxis`.
encoded_image = encoded_image[tf.newaxis,...]
# Run inference (the SavedModel downloaded from AI platform also requires a "key" as input.)
output_dict = model(encoded_image = encoded_image, key = tf.expand_dims(tf.convert_to_tensor("test_key"), 0))
# ...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With