What is the R equivalent of rank functions like the Oracle ROW_NUMBER()
, RANK()
, or DENSE_RANK()
("assign integer values to the rows depending on their order"; see http://www.orafaq.com/node/55)?
I agree that the functionality of each function can potentially be achieved in an ad-hoc fashion. But my main concern is the performance. It would be good to avoid using join or indexing access, for the sake of memory and speed.
The rank of a row is one plus the number of ranks that come before the row in question. ROW_NUMBER and RANK are similar. ROW_NUMBER numbers all rows sequentially (for example 1, 2, 3, 4, 5). RANK provides the same numeric value for ties (for example 1, 2, 2, 4, 5).
rank and dense_rank are similar to row_number , but when there are ties, they will give the same value to the tied values. rank will keep the ranking, so the numbering may go 1, 2, 2, 4 etc, whereas dense_rank will never give any gaps.
The row_number gives continuous numbers, while rank and dense_rank give the same rank for duplicates, but the next number in rank is as per continuous order so you will see a jump but in dense_rank doesn't have any gap in rankings.
dense_rank: dense_rank Window function: returns the rank of rows within a window partition, without any gaps. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties.
The data.table
package, especially starting with version 1.8.1, offers much of the functionality of partition in SQL terms. rank(x, ties.method = "min")
in R is similar to Oracle RANK()
, and there's a way using factors (described below) to mimic the DENSE_RANK()
function. A way to mimic ROW_NUMBER
should be obvious by the end.
Here's an example: Load the latest version of data.table
from R-Forge:
install.packages("data.table", repos= c("http://R-Forge.R-project.org", getOption("repos"))) library(data.table)
Create some example data:
set.seed(10) DT<-data.table(ID=seq_len(4*3),group=rep(1:4,each=3),value=rnorm(4*3), info=c(sample(c("a","b"),4*2,replace=TRUE), sample(c("c","d"),4,replace=TRUE)),key="ID") > DT ID group value info 1: 1 1 0.01874617 a 2: 2 1 -0.18425254 b 3: 3 1 -1.37133055 b 4: 4 2 -0.59916772 a 5: 5 2 0.29454513 b 6: 6 2 0.38979430 a 7: 7 3 -1.20807618 b 8: 8 3 -0.36367602 a 9: 9 3 -1.62667268 c 10: 10 4 -0.25647839 d 11: 11 4 1.10177950 c 12: 12 4 0.75578151 d
Rank each ID
by decreasing value
within group
(note the -
in front of value
to denote decreasing order):
> DT[,valRank:=rank(-value),by="group"] ID group value info valRank 1: 1 1 0.01874617 a 1 2: 2 1 -0.18425254 b 2 3: 3 1 -1.37133055 b 3 4: 4 2 -0.59916772 a 3 5: 5 2 0.29454513 b 2 6: 6 2 0.38979430 a 1 7: 7 3 -1.20807618 b 2 8: 8 3 -0.36367602 a 1 9: 9 3 -1.62667268 c 3 10: 10 4 -0.25647839 d 3 11: 11 4 1.10177950 c 1 12: 12 4 0.75578151 d 2
For DENSE_RANK()
with ties in the value being ranked, you could convert the value to a factor and then return the underlying integer values. For example, ranking each ID
based on info
within group
(compare infoRank
with infoRankDense
):
DT[,infoRank:=rank(info,ties.method="min"),by="group"] DT[,infoRankDense:=as.integer(factor(info)),by="group"] R> DT ID group value info valRank infoRank infoRankDense 1: 1 1 0.01874617 a 1 1 1 2: 2 1 -0.18425254 b 2 2 2 3: 3 1 -1.37133055 b 3 2 2 4: 4 2 -0.59916772 a 3 1 1 5: 5 2 0.29454513 b 2 3 2 6: 6 2 0.38979430 a 1 1 1 7: 7 3 -1.20807618 b 2 2 2 8: 8 3 -0.36367602 a 1 1 1 9: 9 3 -1.62667268 c 3 3 3 10: 10 4 -0.25647839 d 3 2 2 11: 11 4 1.10177950 c 1 1 1 12: 12 4 0.75578151 d 2 2 2
p.s. Hi Matthew Dowle.
LEAD and LAG
For imitating LEAD and LAG, start with the answer provided here. I would create a rank variable based on the order of IDs within groups. This wouldn't be necessary with the fake data as above, but if the IDs are not in sequential order within groups, then this would make life a bit more difficult. So here's some new fake data with non-sequential IDs:
set.seed(10) DT<-data.table(ID=sample(seq_len(4*3)),group=rep(1:4,each=3),value=rnorm(4*3), info=c(sample(c("a","b"),4*2,replace=TRUE), sample(c("c","d"),4,replace=TRUE)),key="ID") DT[,idRank:=rank(ID),by="group"] setkey(DT,group, idRank) > DT ID group value info idRank 1: 4 1 -0.36367602 b 1 2: 5 1 -1.62667268 b 2 3: 7 1 -1.20807618 b 3 4: 1 2 1.10177950 a 1 5: 2 2 0.75578151 a 2 6: 12 2 -0.25647839 b 3 7: 3 3 0.74139013 c 1 8: 6 3 0.98744470 b 2 9: 9 3 -0.23823356 a 3 10: 8 4 -0.19515038 c 1 11: 10 4 0.08934727 c 2 12: 11 4 -0.95494386 c 3
Then to get the values of the previous 1 record, use the group
and idRank
variables and subtract 1
from the idRank
and use the multi = 'last'
argument. To get the value from the record two entries above, subtract 2
.
DT[,prev:=DT[J(group,idRank-1), value, mult='last']] DT[,prev2:=DT[J(group,idRank-2), value, mult='last']] ID group value info idRank prev prev2 1: 4 1 -0.36367602 b 1 NA NA 2: 5 1 -1.62667268 b 2 -0.36367602 NA 3: 7 1 -1.20807618 b 3 -1.62667268 -0.3636760 4: 1 2 1.10177950 a 1 NA NA 5: 2 2 0.75578151 a 2 1.10177950 NA 6: 12 2 -0.25647839 b 3 0.75578151 1.1017795 7: 3 3 0.74139013 c 1 NA NA 8: 6 3 0.98744470 b 2 0.74139013 NA 9: 9 3 -0.23823356 a 3 0.98744470 0.7413901 10: 8 4 -0.19515038 c 1 NA NA 11: 10 4 0.08934727 c 2 -0.19515038 NA 12: 11 4 -0.95494386 c 3 0.08934727 -0.1951504
For LEAD, add the appropriate offset to the idRank
variable and switch to multi = 'first'
:
DT[,nex:=DT[J(group,idRank+1), value, mult='first']] DT[,nex2:=DT[J(group,idRank+2), value, mult='first']] ID group value info idRank prev prev2 nex nex2 1: 4 1 -0.36367602 b 1 NA NA -1.62667268 -1.2080762 2: 5 1 -1.62667268 b 2 -0.36367602 NA -1.20807618 NA 3: 7 1 -1.20807618 b 3 -1.62667268 -0.3636760 NA NA 4: 1 2 1.10177950 a 1 NA NA 0.75578151 -0.2564784 5: 2 2 0.75578151 a 2 1.10177950 NA -0.25647839 NA 6: 12 2 -0.25647839 b 3 0.75578151 1.1017795 NA NA 7: 3 3 0.74139013 c 1 NA NA 0.98744470 -0.2382336 8: 6 3 0.98744470 b 2 0.74139013 NA -0.23823356 NA 9: 9 3 -0.23823356 a 3 0.98744470 0.7413901 NA NA 10: 8 4 -0.19515038 c 1 NA NA 0.08934727 -0.9549439 11: 10 4 0.08934727 c 2 -0.19515038 NA -0.95494386 NA 12: 11 4 -0.95494386 c 3 0.08934727 -0.1951504 NA NA
From data.table v1.9.5+
, function frank()
(for fast rank) has been implemented. frank()
is useful in interactive scenarios, where as frankv()
allows to easily program with.
It implements every operation available in base::rank
. In addition, the advantages are:
frank()
operates on list, data.frames and data.tables in addition to atomic vectors.
We can specify, for each column, whether rank should be computed on increasing or decreasing order.
It also implements rank type dense
in addition to other types in base
.
You can use -
on a character column as well to rank by decreasing order.
Here's an illustration of all the above points using the same data.table DT
from @BenBarnes' (excellent) post.
require(data.table) set.seed(10) sample_n <- function(x, n) sample(x, n, replace=TRUE) DT <- data.table( ID = seq_len(4*3), group = rep(1:4,each=3), value = rnorm(4*3), info = c(sample_n(letters[1:2], 8), sample_n(letters[3:4], 4)))
Compute dense
rank:
DT[, rank := frank(value, ties.method="dense"), by=group]
You can also use the other methods min
, max
, random
, average
and first
.
In decreasing order:
DT[, rank := frank(-value, ties.method="dense"), by=group]
Using frankv
, similar to frank
:
# increasing order frankv(DT, "value", ties.method="dense") # decreasing order frankv(DT, "value", order=-1L, ties.method="dense")
You can use .SD
, which stands for Subset of Data and contains the data corresponding to that group. See the Introduction to data.table HTML vignette for more on .SD
.
Rank by info, value
columns while grouping by group
:
DT[, rank := frank(.SD, info, value, ties.method="dense"), by=group]
Use -
to specify decreasing order:
DT[, rank := frank(.SD, info, -value, ties.method="dense"), by=group]
You can also use -
directly on character columns
DT[, rank := frank(.SD, -info, -value, ties.method="dense"), by=group]
You can use frankv
similarly and provide the columns to cols
argument and the order by which the columns should be ranked using the order
argument.
Small benchmark to compare with base::rank
:
set.seed(45L) x = sample(1e4, 1e7, TRUE) system.time(ans1 <- base::rank(x, ties.method="first")) # user system elapsed # 22.200 0.255 22.536 system.time(ans2 <- frank(x, ties.method="first")) # user system elapsed # 0.745 0.014 0.762 identical(ans1, ans2) # [1] TRUE
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With