I'm trying to do some segmentation on a pointcloud from a kinect one in ROS. As of now i have this:
import rospy
import pcl
from sensor_msgs.msg import PointCloud2
import sensor_msgs.point_cloud2 as pc2
def on_new_point_cloud(data):
pc = pc2.read_points(data, skip_nans=True, field_names=("x", "y", "z"))
pc_list = []
for p in pc:
pc_list.append( [p[0],p[1],p[2]] )
p = pcl.PointCloud()
p.from_list(pc_list)
seg = p.make_segmenter()
seg.set_model_type(pcl.SACMODEL_PLANE)
seg.set_method_type(pcl.SAC_RANSAC)
indices, model = seg.segment()
rospy.init_node('listener', anonymous=True)
rospy.Subscriber("/kinect2/hd/points", PointCloud2, on_new_point_cloud)
rospy.spin()
This seems to work but is very slow because of the for loop. My questions are:
1) How do i effeciently convert from the PointCloud2 message to a pcl pointcloud
2) How do i visualize the clouds.
import rospy
import pcl
from sensor_msgs.msg import PointCloud2
import sensor_msgs.point_cloud2 as pc2
import ros_numpy
def callback(data):
pc = ros_numpy.numpify(data)
points=np.zeros((pc.shape[0],3))
points[:,0]=pc['x']
points[:,1]=pc['y']
points[:,2]=pc['z']
p = pcl.PointCloud(np.array(points, dtype=np.float32))
rospy.init_node('listener', anonymous=True)
rospy.Subscriber("/velodyne_points", PointCloud2, callback)
rospy.spin()
I would prefer using ros_numpy module to first convert to numpy array and initialize Point Cloud from that array.
On Ubuntu 20.04 with Python3 I use the following:
import numpy as np
import pcl # pip3 install python-pcl
import ros_numpy # apt install ros-noetic-ros-numpy
import rosbag
import sensor_msgs
def convert_pc_msg_to_np(pc_msg):
# Fix rosbag issues, see: https://github.com/eric-wieser/ros_numpy/issues/23
pc_msg.__class__ = sensor_msgs.msg._PointCloud2.PointCloud2
offset_sorted = {f.offset: f for f in pc_msg.fields}
pc_msg.fields = [f for (_, f) in sorted(offset_sorted.items())]
# Conversion from PointCloud2 msg to np array.
pc_np = ros_numpy.point_cloud2.pointcloud2_to_xyz_array(pc_msg, remove_nans=True)
pc_pcl = pcl.PointCloud(np.array(pc_np, dtype=np.float32))
return pc_np, pc_pcl # point cloud in numpy and pcl format
# Use a ros subscriber as you already suggested or is shown in the other
# answers to run it online :)
# To run it offline on a rosbag use:
for topic, msg, t in rosbag.Bag('/my/rosbag.bag').read_messages():
if topic == "/my/cloud":
pc_np, pc_pcl = convert_pc_msg_to_np(msg)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With