Here is what I did. I got the code for dog/cat image classification and I compiled and ran and got 80% accuracy. I added one more class (aeroplane) folder to the train and validation folder. Made changes in the following codes
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
changed binary class_mode
to categorical
and also loss to categorical_crossentropy
. Also changed output layout sigmoid
to softmax
.
Receives the following error.
ValueError: Error when checking target: expected activation_10 to have shape (None, 1) but got array with shape (16, 3)
Do I need to explicity change the training labels to categorical like mentioned below? (I read this from the site multilabel classification using keras)
train_labels = to_categorical(train_labels, num_classes=num_classes)
I am not sure what happens here. Please help. I am relatively new to deep learning.
model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
The convolutional neural network (CNN) is most commonly used to build a structure of the deep learning models. In this paper convolutional neural network (CNN) model pre-trained on Image-Net is used for classification of images of the PASCAL VOC 2007 data-set.
Multi-class image classification categorizes an input image into one of the three or more classes.
For multi-class classification, the last dense layer must have a number of nodes equal to the number of classes, followed by softmax
activation, i.e. the last two layers of your model should be:
model.add(Dense(num_classes))
model.add(Activation('softmax'))
Additionally, your labels (both train and test) must be one-hot encoded; so, assuming that your initial cats and dogs were labeled as integers (0/1), and your new category (airplane) is initially similarly labeled as '2', you should convert them as follows:
train_labels = keras.utils.to_categorical(train_labels, num_classes)
test_labels = keras.utils.to_categorical(test_labels, num_classes)
Finally, on a terminology level, what you are doing is multi-class, and not multi-label classification (I have edited the title of your post) - the last term is used for problems where a sample might belong to more than one categories at the same time.
For the multi-class classification, the size of the last layer of a NN must be equal the number of classes.
F.i. for your problem (3 Classes), the code should look like this:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(3))
model.add(Activation('softmax'))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With