Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to display a pandas dataframe as datatable?

I want to display a table - which is a pandas dataframe - as a DataTable. In the simplified example below, I read two numbers provided by a user, that determine the row and column number of the table. The number of elements of this table is then displayed correctly, however, the table does not appear.

The problem is, I think, that I pass the table in the wrong way. When I try

return jsonify(number_elements=a * b,
                   my_table=df)

I get the error

anaconda2/lib/python2.7/json/encoder.py", line 184, in default raise TypeError(repr(o) + " is not JSON serializable")

TypeError: 0 1 2 3 0 51 35 10 84 1 30 60 79 24 is not JSON serializable

if I use

return jsonify(number_elements=a * b,
                   my_table=df.to_json())

then there is no error but the table is still not displayed.

How would I do this correctly?

My index.html file looks like this:

<!DOCTYPE html>
<html lang="en">
  <head>
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
    <link href="https://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"
          rel="stylesheet">
     <link href="https://cdn.datatables.net/1.10.16/css/jquery.dataTables.min.css"
           rel="stylesheet">
  <script type=text/javascript>
    $(function() {
      $('a#calculate').bind('click', function() {
        $.getJSON('/_get_table', {
          a: $('input[name="a"]').val(),
          b: $('input[name="b"]').val()
        }, function(data) {
          $("#elements").text(data.number_elements);
          $("#a_nice_table").DataTable(data.my_table);
        });
        return false;
      });
    });
  </script>
  </head>
  <body>
    <div class="container">
      <div class="header">
        <h3 class="text-muted">Create a pretty table</h3>
      </div>

      <div>
        <p>Number of rows</p>
        <input type="text" size="5" name="a" value="2">
        <p>Number of columns</p>
        <input type="text" size="5" name="b" value="4">

        <p><a href="javascript:void();" id="calculate">get a pretty table</a></p>
         <p>Result</p>
        <p>Number of elements:</p>
          <span id="elements">Hallo</span><br>
          <span id="a_nice_table">Here should be a table</span>
      </div>
    </div>
  </body>
</html>

And my file app.py looks like this:

from flask import Flask, render_template, request, jsonify
import pandas as pd
import numpy as np

# Initialize the Flask application
app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/_get_table')
def get_table():
    a = request.args.get('a', type=int)
    b = request.args.get('b', type=int)

    df = pd.DataFrame(np.random.randint(0, 100, size=(a, b)))

    return jsonify(number_elements=a * b,
                   my_table=df)


if __name__ == '__main__':
    app.run(debug=True)
like image 737
Cleb Avatar asked Feb 05 '18 12:02

Cleb


2 Answers

Here's my implementation. I did some optimizations such as moving your js files to the end of the HTML:

index.html

<!DOCTYPE html>
<html lang="en">
  <head>
    <link href="https://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css" rel="stylesheet">
    <link href="https://cdn.datatables.net/1.10.16/css/jquery.dataTables.min.css" rel="stylesheet">
  </head>
  <body>
    <div class="container">
      <div class="header">
        <h3 class="text-muted">Create a pretty table</h3>
      </div>

      <div>
        <p>Number of rows</p>
        <input type="text" size="5" name="a" value="2">
        <p>Number of columns</p>
        <input type="text" size="5" name="b" value="4">

        <p><a href="javascript:void();" id="calculate">get a pretty table</a></p>
         <p>Result</p>
        <p>Number of elements:</p>
          <span id="elements">Hallo</span><br>
          <table id="a_nice_table">Here should be a table</table>
      </div>
    </div>
    <script src="https://code.jquery.com/jquery-1.12.4.js" type="text/javascript"></script>
    <script src="https://cdn.datatables.net/1.10.16/js/jquery.dataTables.min.js" type="text/javascript"></script>
    <script type="text/javascript">
      $(document).ready(function() {
        var table = null;
        $('a#calculate').bind('click', function() {
          $.getJSON('/_get_table', {
            a: $('input[name="a"]').val(),
            b: $('input[name="b"]').val()
          }, function(data) {
            $("#elements").text(data.number_elements);
            if (table !== null) {
              table.destroy();
              table = null;
              $("#a_nice_table").empty();
            }
            table = $("#a_nice_table").DataTable({
              data: data.my_table,
              columns: data.columns
            });
          });
          return false;
        });
      });
    </script>
  </body>
</html>

app.py

from flask import Flask, render_template, request, jsonify
import pandas as pd
import numpy as np
import json

# Initialize the Flask application
app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/_get_table')
def get_table():
    a = request.args.get('a', type=int)
    b = request.args.get('b', type=int)

    df = pd.DataFrame(np.random.randint(0, 100, size=(a, b)))

    return jsonify(number_elements=a * b,
                   my_table=json.loads(df.to_json(orient="split"))["data"],
                   columns=[{"title": str(col)} for col in json.loads(df.to_json(orient="split"))["columns"]])


if __name__ == '__main__':
    app.run(debug=True)

What I modified:

  1. Added the js file to render the DataTable.
  2. Moved the js files down to the bottom of the HTML.
  3. Added a check in the js to destroy and clear columns when refreshing the data with new data.
  4. Used the to_json method with orient of split to generate the json data for DataTables.
  5. Also had to add a columns json string for DataTables to consume, which is dynamically set after using to_json

Here's how to use panda's to_html for generating the table:

index.html

<!DOCTYPE html>
<html lang="en">
  <head>
    <link href="https://netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css" rel="stylesheet">
    <link href="https://cdn.datatables.net/1.10.16/css/jquery.dataTables.min.css" rel="stylesheet">
  </head>
  <body>
    <div class="container">
      <div class="header">
        <h3 class="text-muted">Create a pretty table</h3>
      </div>

      <div>
        <p>Number of rows</p>
        <input type="text" size="5" name="a" value="2">
        <p>Number of columns</p>
        <input type="text" size="5" name="b" value="4">

        <p><a href="javascript:void();" id="calculate">get a pretty table</a></p>
         <p>Result</p>
        <p>Number of elements:</p>
          <span id="elements">Hallo</span><br>
          <div id="mytablediv">Here should be a table</div>
      </div>
    </div>
    <script src="https://code.jquery.com/jquery-1.12.4.js" type="text/javascript"></script>
    <script src="https://cdn.datatables.net/1.10.16/js/jquery.dataTables.min.js" type="text/javascript"></script>
    <script type="text/javascript">
      $(document).ready(function() {
        var table = null;
        $('a#calculate').bind('click', function() {
          $.getJSON('/_get_table', {
            a: $('input[name="a"]').val(),
            b: $('input[name="b"]').val()
          }, function(data) {
            $("#elements").text(data.number_elements);
            if (table !== null) {
              table.destroy();
              table = null;
              $("#a_nice_table").empty();
            }
            $("#mytablediv").html(data.my_table);
            table = $("#a_nice_table").DataTable();
          });
          return false;
        });
      });
    </script>
  </body>
</html>

app.py

from flask import Flask, render_template, request, jsonify
import pandas as pd
import numpy as np

# Initialize the Flask application
app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index2.html')


@app.route('/_get_table')
def get_table():
    a = request.args.get('a', type=int)
    b = request.args.get('b', type=int)

    df = pd.DataFrame(np.random.randint(0, 100, size=(a, b)))

    return jsonify(number_elements=a * b,
                   my_table=df.to_html(classes='table table-striped" id = "a_nice_table',
                                       index=False, border=0))


if __name__ == '__main__':
    app.run(debug=True)

Differences from former implementation:

  1. In the HTML, I had to add a parent div in order to hold the generated HTML table. In this case, I called it mytablediv.
  2. In the HTML on the JS side, I have to basically modify the HTML content of the mytablediv after I generate my data. This HTML content comes from the to_html output.
  3. In the HTML on the JS side, I didn't have to pass anymore data into the DataTable function because that would be handled with HTML code.
  4. In app.py, I had to use a hackey method for pandas to generate an HTML ID tag. The ID tag lets JS know what element to modify. I used the solution from here.
  5. In app.py, because I'm now generating HTML, I have to also explicitly specify other table style options like border=0 and index=False to mimic the former implementation.
like image 158
Scratch'N'Purr Avatar answered Oct 08 '22 00:10

Scratch'N'Purr


Shouldn't you generate an html table first ? Taking advantage of the pandas.DataFrame.to_html() function ? Indeed, the documentation of DataTables show an example using an html table.

like image 37
arnaud Avatar answered Oct 08 '22 01:10

arnaud