How can the length of the lists in the column be determine without iteration?
I have a dataframe like this:
CreationDate
2013-12-22 15:25:02 [ubuntu, mac-osx, syslinux]
2009-12-14 14:29:32 [ubuntu, mod-rewrite, laconica, apache-2.2]
2013-12-22 15:42:00 [ubuntu, nat, squid, mikrotik]
I am calculating the length of lists in the CreationDate
column and making a new Length
column like this:
df['Length'] = df.CreationDate.apply(lambda x: len(x))
Which gives me this:
CreationDate Length
2013-12-22 15:25:02 [ubuntu, mac-osx, syslinux] 3
2009-12-14 14:29:32 [ubuntu, mod-rewrite, laconica, apache-2.2] 4
2013-12-22 15:42:00 [ubuntu, nat, squid, mikrotik] 4
Is there a more pythonic way to do this?
There is a built-in function called len() for getting the total number of items in a list, tuple, arrays, dictionary, etc. The len() method takes an argument where you may provide a list and it returns the length of the given list.
By using the python length function we can get the length of the Series object, as well as size and shape attributes will return the count of elements and dimension of the series.
Get the number of columns: len(df. columns) The number of columns of pandas. DataFrame can be obtained by applying len() to the columns attribute.
Get Number of Rows in DataFrame You can use len(df. index) to find the number of rows in pandas DataFrame, df. index returns RangeIndex(start=0, stop=8, step=1) and use it on len() to get the count.
You can use the str
accessor for some list operations as well. In this example,
df['CreationDate'].str.len()
returns the length of each list. See the docs for str.len
.
df['Length'] = df['CreationDate'].str.len()
df
Out:
CreationDate Length
2013-12-22 15:25:02 [ubuntu, mac-osx, syslinux] 3
2009-12-14 14:29:32 [ubuntu, mod-rewrite, laconica, apache-2.2] 4
2013-12-22 15:42:00 [ubuntu, nat, squid, mikrotik] 4
For these operations, vanilla Python is generally faster. pandas handles NaNs though. Here are timings:
ser = pd.Series([random.sample(string.ascii_letters,
random.randint(1, 20)) for _ in range(10**6)])
%timeit ser.apply(lambda x: len(x))
1 loop, best of 3: 425 ms per loop
%timeit ser.str.len()
1 loop, best of 3: 248 ms per loop
%timeit [len(x) for x in ser]
10 loops, best of 3: 84 ms per loop
%timeit pd.Series([len(x) for x in ser], index=ser.index)
1 loop, best of 3: 236 ms per loop
pandas.Series.map(len)
and pandas.Series.apply(len)
are equivalent in execution time, and slightly faster than pandas.Series.str.len()
.
pandas.Series.map
pandas.Series.apply
pandas.Series.str.len
Difference between map, applymap and apply methods in Pandas
import pandas as pd
data = {'os': [['ubuntu', 'mac-osx', 'syslinux'], ['ubuntu', 'mod-rewrite', 'laconica', 'apache-2.2'], ['ubuntu', 'nat', 'squid', 'mikrotik']]}
index = ['2013-12-22 15:25:02', '2009-12-14 14:29:32', '2013-12-22 15:42:00']
df = pd.DataFrame(data, index)
# create Length column
df['Length'] = df.os.map(len)
# display(df)
os Length
2013-12-22 15:25:02 [ubuntu, mac-osx, syslinux] 3
2009-12-14 14:29:32 [ubuntu, mod-rewrite, laconica, apache-2.2] 4
2013-12-22 15:42:00 [ubuntu, nat, squid, mikrotik] 4
%timeit
import pandas as pd
import random
import string
random.seed(365)
ser = pd.Series([random.sample(string.ascii_letters, random.randint(1, 20)) for _ in range(10**6)])
%timeit ser.str.len()
252 ms ± 12.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit ser.map(len)
220 ms ± 7.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit ser.apply(len)
222 ms ± 8.31 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With