Using OpenCV Python, I'm wondering what would be the best method to identify areas of an image that have a high concentration of pixels of a certain color, and maybe to 'mark' them by plotting a circle around them.
I tried working with findContours
method, but it's a mess...
My intuition tells me I have to set a range [min : max] of adjacent pixel of a color, then determine the center of that area, and plot a 'O' in it...
The 1st image is an example of what I get after processing a BGR image (to HSV and processing few color masks):
Image before detection
The 2nd image is what I'm trying to plot once the area are detected. Yes, I added the black circle myself as an example :-)
Image after detection
To detect colors in images, the first thing you need to do is define the upper and lower limits for your pixel values. Once you have defined your upper and lower limits, you then make a call to the cv2. inRange method which returns a mask, specifying which pixels fall into your specified upper and lower range.
RGB Image : Pixel intensities in this color space are represented by values ranging from 0 to 255 for single channel. Thus, number of possibilities for one color represented by a pixel is 16 million approximately [255 x 255 x 255 ].
Figure 5: In OpenCV, pixels are accessed by their (x, y)-coordinates. The origin, (0, 0), is located at the top-left of the image. OpenCV images are zero-indexed, where the x-values go left-to-right (column number) and y-values go top-to-bottom (row number). Here, we have the letter “I” on a piece of graph paper.
Color thresholding with cv2.inRange()
should work here
Here's the main idea
I'm assuming you want to detect the yellow area. We begin by converting the image to HSV format then use color thresholding with lower/upper ranges of
lower = np.array([33, 0, 238], dtype="uint8")
upper = np.array([135, 189, 255], dtype="uint8")
This results in a segmented mask
Detected yellow regions
From here we perform morphological transformations to remove small noise
Next we find contours and sum the area with cv2.contourArea()
. The detected areas are highlighted in black
Total area
87781.5
import numpy as np
import cv2
# Load image and HSV color threshold
image = cv2.imread('1.jpg')
original = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower = np.array([33, 0, 238], dtype="uint8")
upper = np.array([135, 189, 255], dtype="uint8")
mask = cv2.inRange(image, lower, upper)
detected = cv2.bitwise_and(original, original, mask=mask)
# Remove noise
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
# Find contours and find total area
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
area = 0
for c in cnts:
area += cv2.contourArea(c)
cv2.drawContours(original,[c], 0, (0,0,0), 2)
print(area)
cv2.imshow('mask', mask)
cv2.imshow('original', original)
cv2.imshow('opening', opening)
cv2.imshow('detected', detected)
cv2.waitKey()
You can use this script to find the color threshold ranges
import cv2
import sys
import numpy as np
def nothing(x):
pass
useCamera=False
# Check if filename is passed
if (len(sys.argv) <= 1) :
print("'Usage: python hsvThresholder.py <ImageFilePath>' to ignore camera and use a local image.")
useCamera = True
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
# Output Image to display
if useCamera:
cap = cv2.VideoCapture(0)
# Wait longer to prevent freeze for videos.
waitTime = 330
else:
img = cv2.imread(sys.argv[1])
output = img
waitTime = 33
while(1):
if useCamera:
# Capture frame-by-frame
ret, img = cap.read()
output = img
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(img,img, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(waitTime) & 0xFF == ord('q'):
break
# Release resources
if useCamera:
cap.release()
cv2.destroyAllWindows()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With