from tensorflow.contrib import lite
converter = lite.TFLiteConverter.from_keras_model_file( 'model.h5')
tfmodel = converter.convert()
open ("model.tflite" , "wb") .write(tfmodel)
You can use the TFLiteConverter to directly convert .h5 files to .tflite file. This does not work on Windows.
For Windows, use this Google Colab notebook to convert. Upload the .h5 file and it will convert it .tflite file.
Follow, if you want to try it yourself :
Create a code cell and insert this code.
from tensorflow.contrib import lite
converter = lite.TFLiteConverter.from_keras_model_file( 'model.h5' ) # Your model's name
model = converter.convert()
file = open( 'model.tflite' , 'wb' )
file.write( model )
Run the cell. You will get a model.tflite file. Right click on the file and select "DOWNLOAD" option.
This worked for me on Windows 10 using Tensorflow 2.1.0 and Keras 2.3.1
import tensorflow as tf
model = tf.keras.models.load_model('model.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
Just did this from CoLab using this code in a notebook:
import tensorflow as tf
model = tf.keras.models.load_model('yourmodel.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflmodel = converter.convert()
file = open( 'yourmodel.tflite' , 'wb' )
file.write( tflmodel )
I had difficulty uploading the h5 model via CoLab so I mounted my Google Drive, uploaded it there, and then moved it over to the notebook content folder.
converter = lite.TFLiteConverter.from_session(sess, in_tensors, out_tensors)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
converter = lite.TFLiteConverter.from_frozen_graph(
graph_def_file, input_arrays, output_arrays)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
import tensorflow as tf
from tensorflow import lite
from tensorflow.keras.models import load_model
converter = lite.TFLiteConverter.from_keras_model(model)
tfmodel = converter.convert()
open ("model.tflite" , "wb") .write(tfmodel)
This works for me. I am using keras==2.6.0 and tensorflow-cpu==2.5.0 version. For more information, you can visit https://www.tensorflow.org/guide/keras/save_and_serialize .
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With