I have data with a MultiIndex, like this:
import itertools
idx1 = list('XYZ')
idx2 = range(3)
idx = pd.MultiIndex.from_tuples(list(itertools.product(idx1,idx2)))
df = pd.DataFrame(np.random.rand(9,4), columns=list('ABCD'), index=idx)
A B C D
first second
X 0 0.808432 0.708881 0.411515 0.704168
1 0.322688 0.093869 0.651238 0.146480
2 0.800746 0.156890 0.131700 0.220423
Y 0 0.102290 0.129895 0.939147 0.510555
1 0.462014 0.749873 0.585867 0.357788
2 0.794327 0.141203 0.414841 0.923480
Z 0 0.557513 0.768428 0.487475 0.824503
1 0.258303 0.115791 0.102588 0.062753
2 0.934960 0.700371 0.319663 0.642070
Here is the result for summing by group over the first index level:
In[]: df.groupby(level=0).sum()
Out[]:
A B C D
first
X 1.931866 0.959640 1.194453 1.071071
Y 1.358631 1.020971 1.939855 1.791824
Z 1.750776 1.584590 0.909725 1.529326
Seems reasonable -- I summed over the first level of the index, so the 2nd level is gone. But if instead I use the rolling
method:
df.groupby(level=0).rolling(2).sum()
I get
A B C D
first first second
X X 0 NaN NaN NaN NaN
1 1.131120 0.802750 1.062753 0.850648
2 1.123434 0.250759 0.782938 0.366903
Y Y 0 NaN NaN NaN NaN
1 0.564303 0.879768 1.525014 0.868343
2 1.256341 0.891075 1.000708 1.281269
Z Z 0 NaN NaN NaN NaN
1 0.815816 0.884219 0.590062 0.887256
2 1.193263 0.816162 0.422251 0.704823
where for some reason pandas has decided to return a 3-level index, repeating the first level. Why is this happening? Is there a better way to write my code so it doesn't do this?
Also, since the first label is repeated, calling reset_index()
on the result gives ValueError: cannot insert first, already exists
so I can't see how to drop the repeated index. Any tips?
Use group_keys=False
:
In [43]: df.groupby(level=0, group_keys=False).rolling(2).sum()
Out[43]:
A B C D
X 0 NaN NaN NaN NaN
1 1.244257 1.430957 0.798310 0.779261
2 0.632238 1.512251 1.473498 0.395945
Y 0 NaN NaN NaN NaN
1 1.241747 0.865178 0.550665 1.070216
2 1.629892 1.328947 1.046749 1.167371
Z 0 NaN NaN NaN NaN
1 0.406606 0.945525 0.936090 1.301093
2 0.701282 0.975851 0.586523 0.698980
In contrast to:
In [44]: df.groupby(level=0, group_keys=True).rolling(2).sum()
Out[44]:
A B C D
X X 0 NaN NaN NaN NaN
1 1.244257 1.430957 0.798310 0.779261
2 0.632238 1.512251 1.473498 0.395945
Y Y 0 NaN NaN NaN NaN
1 1.241747 0.865178 0.550665 1.070216
2 1.629892 1.328947 1.046749 1.167371
Z Z 0 NaN NaN NaN NaN
1 0.406606 0.945525 0.936090 1.301093
2 0.701282 0.975851 0.586523 0.698980
By the way, if you do find yourself stuck with an MultiIndex level that you wish to drop, you can use the MultiIndex.droplevel
method:
result = df.groupby(level=0, group_keys=True).rolling(2).sum()
result.index = result.index.droplevel(level=0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With